These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

535 related articles for article (PubMed ID: 27984729)

  • 1. PAM-Dependent Target DNA Recognition and Cleavage by C2c1 CRISPR-Cas Endonuclease.
    Yang H; Gao P; Rajashankar KR; Patel DJ
    Cell; 2016 Dec; 167(7):1814-1828.e12. PubMed ID: 27984729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. C2c1-sgRNA Complex Structure Reveals RNA-Guided DNA Cleavage Mechanism.
    Liu L; Chen P; Wang M; Li X; Wang J; Yin M; Wang Y
    Mol Cell; 2017 Jan; 65(2):310-322. PubMed ID: 27989439
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type V CRISPR-Cas Cpf1 endonuclease employs a unique mechanism for crRNA-mediated target DNA recognition.
    Gao P; Yang H; Rajashankar KR; Huang Z; Patel DJ
    Cell Res; 2016 Aug; 26(8):901-13. PubMed ID: 27444870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Class 2 CRISPR-Cas RNA-guided endonucleases: Swiss Army knives of genome editing.
    Stella S; Alcón P; Montoya G
    Nat Struct Mol Biol; 2017 Nov; 24(11):882-892. PubMed ID: 29035385
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for substrate recognition and cleavage by the dimerization-dependent CRISPR-Cas12f nuclease.
    Xiao R; Li Z; Wang S; Han R; Chang L
    Nucleic Acids Res; 2021 Apr; 49(7):4120-4128. PubMed ID: 33764415
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems.
    Shmakov S; Abudayyeh OO; Makarova KS; Wolf YI; Gootenberg JS; Semenova E; Minakhin L; Joung J; Konermann S; Severinov K; Zhang F; Koonin EV
    Mol Cell; 2015 Nov; 60(3):385-97. PubMed ID: 26593719
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Affinity Changes in Substrate Binding Affect the Cleavage Activity of BthC2c1.
    Wu D; Liu J; Liu Y; Qiu Y; Cao Z; Pan Y; Shi J; Yuan X
    Protein Pept Lett; 2023; 30(3):233-241. PubMed ID: 36698226
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure of the Cpf1 endonuclease R-loop complex after target DNA cleavage.
    Stella S; Alcón P; Montoya G
    Nature; 2017 Jun; 546(7659):559-563. PubMed ID: 28562584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA.
    Yamano T; Nishimasu H; Zetsche B; Hirano H; Slaymaker IM; Li Y; Fedorova I; Nakane T; Makarova KS; Koonin EV; Ishitani R; Zhang F; Nureki O
    Cell; 2016 May; 165(4):949-62. PubMed ID: 27114038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bacterial CRISPR/Cas DNA endonucleases: A revolutionary technology that could dramatically impact viral research and treatment.
    Kennedy EM; Cullen BR
    Virology; 2015 May; 479-480():213-20. PubMed ID: 25759096
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural Basis for the Inhibition of CRISPR-Cas12a by Anti-CRISPR Proteins.
    Zhang H; Li Z; Daczkowski CM; Gabel C; Mesecar AD; Chang L
    Cell Host Microbe; 2019 Jun; 25(6):815-826.e4. PubMed ID: 31155345
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural insights into target DNA recognition and cleavage by the CRISPR-Cas12c1 system.
    Zhang B; Lin J; Perčulija V; Li Y; Lu Q; Chen J; Ouyang S
    Nucleic Acids Res; 2022 Nov; 50(20):11820-11833. PubMed ID: 36321657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure of the mini-RNA-guided endonuclease CRISPR-Cas12j3.
    Carabias A; Fuglsang A; Temperini P; Pape T; Sofos N; Stella S; Erlendsson S; Montoya G
    Nat Commun; 2021 Jul; 12(1):4476. PubMed ID: 34294706
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Building the Class 2 CRISPR-Cas Arsenal.
    Lewis KM; Ke A
    Mol Cell; 2017 Feb; 65(3):377-379. PubMed ID: 28157502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring the potential of genome editing CRISPR-Cas9 technology.
    Singh V; Braddick D; Dhar PK
    Gene; 2017 Jan; 599():1-18. PubMed ID: 27836667
    [TBL] [Abstract][Full Text] [Related]  

  • 16. FnCpf1: a novel and efficient genome editing tool for Saccharomyces cerevisiae.
    Swiat MA; Dashko S; den Ridder M; Wijsman M; van der Oost J; Daran JM; Daran-Lapujade P
    Nucleic Acids Res; 2017 Dec; 45(21):12585-12598. PubMed ID: 29106617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Type II and type V CRISPR effector nucleases from a structural biologist's perspective.
    Fernandes H; Pastor M; Bochtler M
    Postepy Biochem; 2016; 62(3):315-326. PubMed ID: 28132486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of the type V-C CRISPR-Cas effector enzyme.
    Kurihara N; Nakagawa R; Hirano H; Okazaki S; Tomita A; Kobayashi K; Kusakizako T; Nishizawa T; Yamashita K; Scott DA; Nishimasu H; Nureki O
    Mol Cell; 2022 May; 82(10):1865-1877.e4. PubMed ID: 35366394
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Repurposing CRISPR-Cas12b for mammalian genome engineering.
    Teng F; Cui T; Feng G; Guo L; Xu K; Gao Q; Li T; Li J; Zhou Q; Li W
    Cell Discov; 2018; 4():63. PubMed ID: 30510770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel thermal Cas12b from a hot spring bacterium with high target mismatch tolerance and robust DNA cleavage efficiency.
    Tian Y; Liu RR; Xian WD; Xiong M; Xiao M; Li WJ
    Int J Biol Macromol; 2020 Mar; 147():376-384. PubMed ID: 31926228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.