These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27984820)

  • 1. Comparative proteomics reveal the mechanism of Tween80 enhanced phenanthrene biodegradation by Sphingomonas sp. GY2B.
    Liu S; Guo C; Dang Z; Liang X
    Ecotoxicol Environ Saf; 2017 Mar; 137():256-264. PubMed ID: 27984820
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative transcriptomic evidence for Tween80-enhanced biodegradation of phenanthrene by Sphingomonas sp. GY2B.
    Liu S; Guo C; Lin W; Wu F; Lu G; Lu J; Dang Z
    Sci Total Environ; 2017 Dec; 609():1161-1171. PubMed ID: 28787790
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nonionic surfactants induced changes in cell characteristics and phenanthrene degradation ability of Sphingomonas sp. GY2B.
    Liu S; Guo C; Liang X; Wu F; Dang Z
    Ecotoxicol Environ Saf; 2016 Jul; 129():210-8. PubMed ID: 27045921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced biodegradation of phenanthrene by a marine bacterium in presence of a synthetic surfactant.
    Cuny P; Faucet J; Acquaviva M; Bertrand JC; Gilewicz M
    Lett Appl Microbiol; 1999 Oct; 29(4):242-5. PubMed ID: 10583752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B.
    She B; Tao X; Huang T; Lu G; Zhou Z; Guo C; Dang Z
    Ecotoxicol Environ Saf; 2016 Mar; 125():35-42. PubMed ID: 26655231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A fusant of Sphingomonas sp. GY2B and Pseudomonas sp. GP3A with high capacity of degrading phenanthrene.
    Lu J; Guo C; Li J; Zhang H; Lu G; Dang Z; Wu R
    World J Microbiol Biotechnol; 2013 Sep; 29(9):1685-94. PubMed ID: 23529357
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differential regulation of phenanthrene biodegradation process by kaolinite and quartz and the underlying mechanism.
    Gong B; Wu P; Ruan B; Zhang Y; Lai X; Yu L; Li Y; Dang Z
    J Hazard Mater; 2018 May; 349():51-59. PubMed ID: 29414752
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid degradation of phenanthrene by using Sphingomonas sp. GY2B immobilized in calcium alginate gel beads.
    Tao XQ; Lu GN; Liu JP; Li T; Yang LN
    Int J Environ Res Public Health; 2009 Sep; 6(9):2470-80. PubMed ID: 19826557
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How humic acid and Tween80 improve the phenanthrene biodegradation efficiency: Insight from cellular characteristics and quantitative proteomics.
    Zhang L; Wang M; Cui H; Qiao J; Guo D; Wang B; Li X; Huang H
    J Hazard Mater; 2022 Jan; 421():126685. PubMed ID: 34332485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the genome and proteome of Sphingomonas paucimobilis strain 20006FA involved in the regulation of polycyclic aromatic hydrocarbon degradation.
    Macchi M; Martinez M; Tauil RMN; Valacco MP; Morelli IS; Coppotelli BM
    World J Microbiol Biotechnol; 2017 Dec; 34(1):7. PubMed ID: 29214360
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of surfactant-induced cell surface modifications on electron transport system and catechol 1,2-dioxygenase activities and phenanthrene biodegradation by Citrobacter sp. SA01.
    Li F; Zhu L
    Bioresour Technol; 2012 Nov; 123():42-8. PubMed ID: 22940296
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [The influence on the biodegradation of phenanthrene by nonionic surfactant, Tween20].
    Yang JG; Liu X; Yu G; Long T; She P; Liu Z
    Huan Jing Ke Xue; 2004 Jan; 25(1):53-6. PubMed ID: 15330421
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uptake of polycyclic aromatic hydrocarbons by Trifolium pretense L. from water in the presence of a nonionic surfactant.
    Gao Y; Shen Q; Ling W; Ren L
    Chemosphere; 2008 Jun; 72(4):636-43. PubMed ID: 18387650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment.
    Chen J; Wong MH; Wong YS; Tam NF
    Mar Pollut Bull; 2008; 57(6-12):695-702. PubMed ID: 18433800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant-modified fatty acid composition of Citrobacter sp. SA01 and its effect on phenanthrene transmembrane transport.
    Li F; Zhu L
    Chemosphere; 2014 Jul; 107():58-64. PubMed ID: 24875871
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrokinetic-Enhanced Remediation of Phenanthrene-Contaminated Soil Combined with Sphingomonas sp. GY2B and Biosurfactant.
    Lin W; Guo C; Zhang H; Liang X; Wei Y; Lu G; Dang Z
    Appl Biochem Biotechnol; 2016 Apr; 178(7):1325-38. PubMed ID: 26683200
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions.
    Zhao B; Zhu L; Li W; Chen B
    Chemosphere; 2005 Jan; 58(1):33-40. PubMed ID: 15522330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of nonionic surfactants on biodegradation of phenanthrene by a marine bacteria of Neptunomonas naphthovorans.
    Li JL; Chen BH
    J Hazard Mater; 2009 Feb; 162(1):66-73. PubMed ID: 18554784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preferential surfactant utilization by a PAH-degrading strain: effects on micellar solubilization phenomena.
    Kim HS; Weber WJ
    Environ Sci Technol; 2003 Aug; 37(16):3574-80. PubMed ID: 12953868
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of nonionic surfactant on the solubilization and biodegradation of phenanthrene.
    Yang JG; Liu X; Long T; Yu G; Peng S; Zheng L
    J Environ Sci (China); 2003 Nov; 15(6):859-62. PubMed ID: 14758909
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.