These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 27984857)

  • 1. Effects of sublethal concentrations of silver nanoparticles on Escherichia coli and Bacillus subtilis under aerobic and anaerobic conditions.
    Garuglieri E; Cattò C; Villa F; Zanchi R; Cappitelli F
    Biointerphases; 2016 Dec; 11(4):04B308. PubMed ID: 27984857
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Susceptibility constants of Escherichia coli and Bacillus subtilis to silver and copper nanoparticles.
    Yoon KY; Hoon Byeon J; Park JH; Hwang J
    Sci Total Environ; 2007 Feb; 373(2-3):572-5. PubMed ID: 17173953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities.
    Golińska P; Wypij M; Rathod D; Tikar S; Dahm H; Rai M
    J Basic Microbiol; 2016 May; 56(5):541-56. PubMed ID: 27151174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of graphene oxide-silver nanoparticle nanohybrids with highly antibacterial capability.
    Zhu Z; Su M; Ma L; Ma L; Liu D; Wang Z
    Talanta; 2013 Dec; 117():449-55. PubMed ID: 24209367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inactivation of S. epidermidis, B. subtilis, and E. coli bacteria bioaerosols deposited on a filter utilizing airborne silver nanoparticles.
    Lee BU; Yun SH; Ji JH; Bae GN
    J Microbiol Biotechnol; 2008 Jan; 18(1):176-82. PubMed ID: 18239437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of silver nanoparticles by solar irradiation of cell-free Bacillus amyloliquefaciens extracts and AgNO3.
    Wei X; Luo M; Li W; Yang L; Liang X; Xu L; Kong P; Liu H
    Bioresour Technol; 2012 Jan; 103(1):273-8. PubMed ID: 22019398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stable Silver Nanoparticles Synthesis by Citrus Sinensis (Orange) and Assessing Activity Against Food Poisoning Microbes.
    Naila A; Nadia D; Zahoor QS
    Biomed Environ Sci; 2014 Oct; 27(10):815-8. PubMed ID: 25341818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Physicochemical Properties and Antibacterial Effect of Silver Nanoparticles: A Comparison of Environmental and Laboratorial Conditions].
    Yi J; Cheng JP
    Huan Jing Ke Xue; 2017 Mar; 38(3):1173-1181. PubMed ID: 29965592
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polysaccharide-based silver nanoparticles synthesized by Klebsiella oxytoca DSM 29614 cause DNA fragmentation in E. coli cells.
    Baldi F; Daniele S; Gallo M; Paganelli S; Battistel D; Piccolo O; Faleri C; Puglia AM; Gallo G
    Biometals; 2016 Apr; 29(2):321-31. PubMed ID: 26886276
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7.
    Xu H; Qu F; Xu H; Lai W; Andrew Wang Y; Aguilar ZP; Wei H
    Biometals; 2012 Feb; 25(1):45-53. PubMed ID: 21805351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assay-dependent effect of silver nanoparticles to Escherichia coli and Bacillus subtilis.
    Kim SW; Baek YW; An YJ
    Appl Microbiol Biotechnol; 2011 Dec; 92(5):1045-52. PubMed ID: 21986863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of water chemistry and surface contact on the toxicity of silver nanoparticles to Bacillus subtilis.
    Yi J; Cheng J
    Ecotoxicology; 2017 Jul; 26(5):639-647. PubMed ID: 28378128
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative toxicity of silver nanoparticles and silver ions to Escherichia coli.
    Choi Y; Kim HA; Kim KW; Lee BT
    J Environ Sci (China); 2018 Apr; 66():50-60. PubMed ID: 29628108
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of sublethal doses of silver nanoparticles on Bacillus subtilis planktonic and sessile cells.
    Gambino M; Marzano V; Villa F; Vitali A; Vannini C; Landini P; Cappitelli F
    J Appl Microbiol; 2015 May; 118(5):1103-15. PubMed ID: 25702880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of antibiotic resistance in bacteria mediated by silver nanoparticles.
    Kaweeteerawat C; Na Ubol P; Sangmuang S; Aueviriyavit S; Maniratanachote R
    J Toxicol Environ Health A; 2017; 80(23-24):1276-1289. PubMed ID: 29020531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study of Bacillus subtilis response to different forms of silver.
    Rafińska K; Pomastowski P; Buszewski B
    Sci Total Environ; 2019 Apr; 661():120-129. PubMed ID: 30669044
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differential transformation and antibacterial effects of silver nanoparticles in aerobic and anaerobic environment.
    Dong F; Zhou Y
    Nanotoxicology; 2019 Apr; 13(3):339-353. PubMed ID: 30729836
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aerobic condition enhances bacteriostatic effects of silver nanoparticles in aquatic environment: an antimicrobial study on Pseudomonas aeruginosa.
    Chen Z; Yang P; Yuan Z; Guo J
    Sci Rep; 2017 Aug; 7(1):7398. PubMed ID: 28785059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Antibacterial Effects of Biosynthesized Silver Nanoparticles on Surface Ultrastructure and Nanomechanical Properties of Gram-Negative Bacteria viz. Escherichia coli and Pseudomonas aeruginosa.
    Ramalingam B; Parandhaman T; Das SK
    ACS Appl Mater Interfaces; 2016 Feb; 8(7):4963-76. PubMed ID: 26829373
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative study between chemostat and batch reactors to quantify membrane permeability changes on bacteria exposed to silver nanoparticles.
    Anaya NM; Faghihzadeh F; Ganji N; Bothun G; Oyanedel-Craver V
    Sci Total Environ; 2016 Sep; 565():841-848. PubMed ID: 26996524
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.