These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 27984916)

  • 1. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Short-range second order screened exchange correction to RPA correlation energies.
    Beuerle M; Ochsenfeld C
    J Chem Phys; 2017 Nov; 147(20):204107. PubMed ID: 29195276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RPA Atomization Energy Puzzle.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Theory Comput; 2010 Jan; 6(1):127-34. PubMed ID: 26614325
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies.
    Förster A
    J Chem Theory Comput; 2022 Oct; 18(10):5948-5965. PubMed ID: 36150190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate Diels-Alder reaction energies from efficient density functional calculations.
    Mezei PD; Csonka GI; Kállay M
    J Chem Theory Comput; 2015 Jun; 11(6):2879-88. PubMed ID: 26575577
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beyond the random-phase approximation for the electron correlation energy: the importance of single excitations.
    Ren X; Tkatchenko A; Rinke P; Scheffler M
    Phys Rev Lett; 2011 Apr; 106(15):153003. PubMed ID: 21568551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Developing the random phase approximation into a practical post-Kohn-Sham correlation model.
    Furche F
    J Chem Phys; 2008 Sep; 129(11):114105. PubMed ID: 19044948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the accuracy of ground-state correlation energies within a plane-wave basis set: The electron-hole exchange kernel.
    Dixit A; Ángyán JG; Rocca D
    J Chem Phys; 2016 Sep; 145(10):104105. PubMed ID: 27634249
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical accuracy with σ-functionals for the Kohn-Sham correlation energy optimized for different input orbitals and eigenvalues.
    Fauser S; Trushin E; Neiss C; Görling A
    J Chem Phys; 2021 Oct; 155(13):134111. PubMed ID: 34624971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance and Scope of Perturbative Corrections to Random-Phase Approximation Energies.
    Chen GP; Agee MM; Furche F
    J Chem Theory Comput; 2018 Nov; 14(11):5701-5714. PubMed ID: 30240213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory.
    Göltl F; Grüneis A; Bučko T; Hafner J
    J Chem Phys; 2012 Sep; 137(11):114111. PubMed ID: 22998253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Excitation energies from particle-particle random phase approximation with accurate optimized effective potentials.
    Jin Y; Yang Y; Zhang D; Peng D; Yang W
    J Chem Phys; 2017 Oct; 147(13):134105. PubMed ID: 28987104
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Divergence of Many-Body Perturbation Theory for Noncovalent Interactions of Large Molecules.
    Nguyen BD; Chen GP; Agee MM; Burow AM; Tang MP; Furche F
    J Chem Theory Comput; 2020 Apr; 16(4):2258-2273. PubMed ID: 32105488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shrinking Self-Interaction Errors with the Fermi-Löwdin Orbital Self-Interaction-Corrected Density Functional Approximation.
    Sharkas K; Li L; Trepte K; Withanage KPK; Joshi RP; Zope RR; Baruah T; Johnson JK; Jackson KA; Peralta JE
    J Phys Chem A; 2018 Dec; 122(48):9307-9315. PubMed ID: 30412407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient calculation of beyond RPA correlation energies in the dielectric matrix formalism.
    Beuerle M; Graf D; Schurkus HF; Ochsenfeld C
    J Chem Phys; 2018 May; 148(20):204104. PubMed ID: 29865814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Random-phase-approximation-based correlation energy functionals: benchmark results for atoms.
    Jiang H; Engel E
    J Chem Phys; 2007 Nov; 127(18):184108. PubMed ID: 18020631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A simple but fully nonlocal correction to the random phase approximation.
    Ruzsinszky A; Perdew JP; Csonka GI
    J Chem Phys; 2011 Mar; 134(11):114110. PubMed ID: 21428610
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange.
    Moussa JE
    J Chem Phys; 2014 Jan; 140(1):014107. PubMed ID: 24410221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid functionals including random phase approximation correlation and second-order screened exchange.
    Paier J; Janesko BG; Henderson TM; Scuseria GE; Grüneis A; Kresse G
    J Chem Phys; 2010 Mar; 132(9):094103. PubMed ID: 20210385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.