These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
359 related articles for article (PubMed ID: 27984916)
21. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel. Bleiziffer P; Krug M; Görling A J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411 [TBL] [Abstract][Full Text] [Related]
22. Variational, Self-Consistent Implementation of the Perdew-Zunger Self-Interaction Correction with Complex Optimal Orbitals. Lehtola S; Jónsson H J Chem Theory Comput; 2014 Dec; 10(12):5324-37. PubMed ID: 26583216 [TBL] [Abstract][Full Text] [Related]
23. Fast computation of molecular random phase approximation correlation energies using resolution of the identity and imaginary frequency integration. Eshuis H; Yarkony J; Furche F J Chem Phys; 2010 Jun; 132(23):234114. PubMed ID: 20572696 [TBL] [Abstract][Full Text] [Related]
25. Increasing the applicability of density functional theory. II. Correlation potentials from the random phase approximation and beyond. Verma P; Bartlett RJ J Chem Phys; 2012 Jan; 136(4):044105. PubMed ID: 22299859 [TBL] [Abstract][Full Text] [Related]
26. Perdew-Zunger self-interaction correction: How wrong for uniform densities and large-Z atoms? Santra B; Perdew JP J Chem Phys; 2019 May; 150(17):174106. PubMed ID: 31067900 [TBL] [Abstract][Full Text] [Related]
27. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation. van Aggelen H; Yang Y; Yang W J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319 [TBL] [Abstract][Full Text] [Related]
28. Toward chemical accuracy at low computational cost: Density-functional theory with σ-functionals for the correlation energy. Trushin E; Thierbach A; Görling A J Chem Phys; 2021 Jan; 154(1):014104. PubMed ID: 33412877 [TBL] [Abstract][Full Text] [Related]
29. Towards improved local hybrid functionals by calibration of exchange-energy densities. Arbuznikov AV; Kaupp M J Chem Phys; 2014 Nov; 141(20):204101. PubMed ID: 25429927 [TBL] [Abstract][Full Text] [Related]
30. Explanation of the Source of Very Large Errors in Many Exchange-Correlation Functionals for Vanadium Dimer. Zhang W; Truhlar DG; Tang M J Chem Theory Comput; 2014 Jun; 10(6):2399-409. PubMed ID: 26580760 [TBL] [Abstract][Full Text] [Related]
31. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation. Burow AM; Bates JE; Furche F; Eshuis H J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901 [TBL] [Abstract][Full Text] [Related]
33. The limitations of Slater's element-dependent exchange functional from analytic density-functional theory. Zope RR; Dunlap BI J Chem Phys; 2006 Jan; 124(4):044107. PubMed ID: 16460149 [TBL] [Abstract][Full Text] [Related]
34. Accurate NMR Shieldings with σ-Functionals. Fauser S; Drontschenko V; Ochsenfeld C; Görling A J Chem Theory Comput; 2024 Jul; 20(14):6028-6036. PubMed ID: 38967385 [TBL] [Abstract][Full Text] [Related]
35. Low-Scaling Self-Consistent Minimization of a Density Matrix Based Random Phase Approximation Method in the Atomic Orbital Space. Graf D; Beuerle M; Ochsenfeld C J Chem Theory Comput; 2019 Aug; 15(8):4468-4477. PubMed ID: 31368702 [TBL] [Abstract][Full Text] [Related]
36. Description of noncovalent interactions involving π-system with high precision: An assessment of RPA, MP2, and DFT-D methods. Su H; Wang H; Wang H; Lu Y; Zhu Z J Comput Chem; 2019 Jun; 40(17):1643-1651. PubMed ID: 30937960 [TBL] [Abstract][Full Text] [Related]
37. Charge transfer excitations from particle-particle random phase approximation-Opportunities and challenges arising from two-electron deficient systems. Yang Y; Dominguez A; Zhang D; Lutsker V; Niehaus TA; Frauenheim T; Yang W J Chem Phys; 2017 Mar; 146(12):124104. PubMed ID: 28388105 [TBL] [Abstract][Full Text] [Related]
38. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations. van Meer R; Gritsenko OV; Baerends EJ J Chem Theory Comput; 2014 Oct; 10(10):4432-41. PubMed ID: 26588140 [TBL] [Abstract][Full Text] [Related]
39. Localized Resolution of Identity Approach to the Analytical Gradients of Random-Phase Approximation Ground-State Energy: Algorithm and Benchmarks. Tahir MN; Zhu T; Shang H; Li J; Blum V; Ren X J Chem Theory Comput; 2022 Sep; 18(9):5297-5311. PubMed ID: 35959556 [TBL] [Abstract][Full Text] [Related]
40. Reference Determinant Dependence of the Random Phase Approximation in 3d Transition Metal Chemistry. Bates JE; Mezei PD; Csonka GI; Sun J; Ruzsinszky A J Chem Theory Comput; 2017 Jan; 13(1):100-109. PubMed ID: 27996258 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]