These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

49 related articles for article (PubMed ID: 2798494)

  • 1. Steady lengthening of intact frog single muscle fibres reveals a fast cross-bridge turnover.
    Colomo F; Lombardi V; Piazzesi G
    Prog Clin Biol Res; 1989; 315():229-30. PubMed ID: 2798494
    [No Abstract]   [Full Text] [Related]  

  • 2. Decreased Ca2-buffering contributes to slowing of relaxation in fatigued Xenopus muscle fibres.
    Westerblad H; Lännergren J
    Acta Physiol Scand; 1990 May; 139(1):243-4. PubMed ID: 2356753
    [No Abstract]   [Full Text] [Related]  

  • 3. Time-relations of initial volume decrease and contraction in frog muscles.
    Schäffer B; Orkényi J
    Acta Biochim Biophys Acad Sci Hung; 1972; 7(3):255-61. PubMed ID: 4546961
    [No Abstract]   [Full Text] [Related]  

  • 4. Alteration of the voltage-dependence of the twitch tension in frog skeletal muscle fibres by a polyether, Bistramide A.
    Sauviat MP; Verbist JF
    Gen Physiol Biophys; 1993 Oct; 12(5):465-71. PubMed ID: 8181693
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Latency relaxation and short-range elasticity in single muscle fibres of the frog.
    Haugen P
    Acta Physiol Scand Suppl; 1983; 519():1-48. PubMed ID: 6359819
    [No Abstract]   [Full Text] [Related]  

  • 6. The recovery of tension in transients during steady lengthening of frog muscle fibres.
    Colomo F; Lombardi V; Piazzesi G
    Pflugers Arch; 1989 Jun; 414(2):245-7. PubMed ID: 2787906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of temperature and velocity of stretching on stress relaxation of contracting frog muscle fibres.
    Cavagna GA
    J Physiol; 1993 Mar; 462():161-73. PubMed ID: 8331582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of tension decline in different types of fatigue-resistant skeletal muscle fibres of the frog. Low extracellular calcium effects.
    Radzyukevich T; Lipská E; Pavelková J; Zacharová D
    Gen Physiol Biophys; 1993 Oct; 12(5):473-90. PubMed ID: 8181694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isometric twitch and tetanic contraction of frog skeletal muscles at temperatures between 0 to 30 degrees C.
    Kössler F; Lange F; Küchler G
    Biomed Biochim Acta; 1987; 46(11):809-13. PubMed ID: 3502248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Decay of Ca2+ and force transients in fast- and slow-twitch skeletal muscles from the rat, mouse and Etruscan shrew.
    Wetzel P; Gros G
    J Exp Biol; 1998 Feb; 201(Pt 3):375-84. PubMed ID: 9503643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Passive interaction in thick and thin filaments in shrunken skinned muscle fibers.
    Tsuchiya T
    Prog Clin Biol Res; 1989; 315():221-2. PubMed ID: 2798491
    [No Abstract]   [Full Text] [Related]  

  • 12. The chloride conductance of intermediate fibres from frog muscles.
    Lorković H
    Gen Physiol Biophys; 1987 Dec; 6(6):561-9. PubMed ID: 3502101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Muscle fatigue. Metabolic changes in muscle mass].
    Lännergren J; Westerblad H
    Nord Med; 1994; 109(1):23-7. PubMed ID: 8028994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. New insights into the passive force enhancement in skeletal muscles.
    Lee EJ; Joumaa V; Herzog W
    J Biomech; 2007; 40(4):719-27. PubMed ID: 17097664
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The force-velocity relation of frog sartorius muscle at constant velocities of lengthening.
    Chaplain RA
    Experientia; 1972 Mar; 28(3):292-3. PubMed ID: 4537255
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanics of contraction and relaxation in papillary muscles of healthy and centrifugated baboons.
    Lecarpentier Y; Tran DC; Chemla D; Clergue M; Lambert F; Quandieu P
    Physiologist; 1990 Feb; 33(1 Suppl):S147-8. PubMed ID: 2371323
    [No Abstract]   [Full Text] [Related]  

  • 17. [Comparative study of latency relaxation and contraction of frog skeletal muscle (author's transl)].
    Herbst M; Piontek P
    Pflugers Arch; 1974 Jan; 346(1):61-73. PubMed ID: 4544288
    [No Abstract]   [Full Text] [Related]  

  • 18. The possible role of carnitine and carnitine acetyl-transferase in the contracting frog skeletal muscle.
    Alkonyi I; Kerner J; Sándor A
    FEBS Lett; 1975 Apr; 52(2):265-8. PubMed ID: 1079493
    [No Abstract]   [Full Text] [Related]  

  • 19. The unification of muscle structure and function: a semicentennial anniversary.
    Herrmann H
    Perspect Biol Med; 1989; 33(1):1-11. PubMed ID: 2689995
    [No Abstract]   [Full Text] [Related]  

  • 20. Changes of stiffness of skeletal muscle during latency relaxation.
    Herbst M; Piontek P
    Biochem Biophys Res Commun; 1974 Mar; 57(1):120-5. PubMed ID: 4545317
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.