These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 2798529)

  • 21. Resveratrol Protects Against Vacuous Chewing Movements Induced by Chronic Treatment with Fluphenazine.
    Busanello A; Leal CQ; Peroza LR; Röpke J; de Moraes Reis E; de Freitas CM; Libardoni M; de Vargas Barbosa NB; Fachinetto R
    Neurochem Res; 2017 Nov; 42(11):3033-3040. PubMed ID: 28744755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Association with persistent neuroleptic-induced dyskinesia of regional changes in brain GABA synthesis.
    Gunne LM; Häggström JE; Sjöquist B
    Nature; 1984 May 24-30; 309(5966):347-9. PubMed ID: 6727989
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Harpagophytum Procumbens Ethyl Acetate Fraction Reduces Fluphenazine-Induced Vacuous Chewing Movements and Oxidative Stress in Rat Brain.
    Schaffer LF; de Freitas CM; Chiapinotto Ceretta AP; Peroza LR; de Moraes Reis E; Krum BN; Busanello A; Boligon AA; Sudati JH; Fachinetto R; Wagner C
    Neurochem Res; 2016 May; 41(5):1170-84. PubMed ID: 26732278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Involvement of adenosinergic receptor system in an animal model of tardive dyskinesia and associated behavioural, biochemical and neurochemical changes.
    Bishnoi M; Chopra K; Kulkarni SK
    Eur J Pharmacol; 2006 Dec; 552(1-3):55-66. PubMed ID: 17064683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neurotensin and neurotensin analogues modify the effects of chronic neuroleptic administration in the rat.
    Stoessl AJ; Szczutkowski E
    Brain Res; 1991 Sep; 558(2):289-95. PubMed ID: 1685934
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Plasma levels of fluphenazine in patients receiving fluphenazine decanoate. Relationship to clinical response.
    Marder SR; Midha KK; Van Putten T; Aravagiri M; Hawes EM; Hubbard JW; McKay G; Mintz J
    Br J Psychiatry; 1991 May; 158():658-65. PubMed ID: 1860020
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Clinical aspects of tardive dyskinesias induced by neuroleptics].
    Villeneuve A; Lajeunesse C
    Encephale; 1988 Sep; 14 Spec No():209-14. PubMed ID: 2905648
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A potential amphetamine antagonist, adamantanamine derivative of fluphenazine.
    Ho BT; Englert LF; McKenna ML
    J Med Chem; 1976 Jun; 19(6):850-2. PubMed ID: 950658
    [No Abstract]   [Full Text] [Related]  

  • 29. Differential effects of classical and newer antipsychotics on the hypermotility induced by two dose levels of D-amphetamine.
    Arnt J
    Eur J Pharmacol; 1995 Sep; 283(1-3):55-62. PubMed ID: 7498321
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Antischizophrenic drugs: chronic treatment elevates dopamine receptor binding in brain.
    Burt DR; Creese I; Snyder SH
    Science; 1977 Apr; 196(4287):326-8. PubMed ID: 847477
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental tardive dyskinesia.
    Gunne LM; Häggström JE
    J Clin Psychiatry; 1985 Apr; 46(4 Pt 2):48-50. PubMed ID: 2858481
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of 5-HT1A and 5-HT2A/2C receptor modulation on neuroleptic-induced vacuous chewing movements.
    Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2001 Sep; 428(1):81-6. PubMed ID: 11779040
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Suppression of neuroleptic-induced persistent abnormal movements in Cebus apella monkeys by enantiomers of 3-PPP.
    Kovacic B; Le Witt P; Clark D
    J Neural Transm; 1988; 74(2):97-107. PubMed ID: 3235997
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Long-term trial of fluphenazine decanoate and flupenthixol decanoate for cataleptic activity and effect on motor activity in rats.
    Chandra O; Bernard J; Matussek N
    Arzneimittelforschung; 1974 Nov; 24(11):1821-4. PubMed ID: 4480057
    [No Abstract]   [Full Text] [Related]  

  • 35. Protective effect of rutin, a polyphenolic flavonoid against haloperidol-induced orofacial dyskinesia and associated behavioural, biochemical and neurochemical changes.
    Bishnoi M; Chopra K; Kulkarni SK
    Fundam Clin Pharmacol; 2007 Oct; 21(5):521-9. PubMed ID: 17868205
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neuroleptic antagonism of dyskinetic phenomena.
    Costall B; Naylor RJ
    Eur J Pharmacol; 1975; 33(2):301-12. PubMed ID: 241654
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Possible antioxidant and neuroprotective mechanisms of FK506 in attenuating haloperidol-induced orofacial dyskinesia.
    Singh A; Naidu PS; Kulkarni SK
    Eur J Pharmacol; 2003 Sep; 477(2):87-94. PubMed ID: 14519411
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Chronic administration of typical, but not atypical neuroleptics induce persisting alterations in rest-activity cycles in rats.
    Ellison G; See RE
    Pharmacol Biochem Behav; 1990 Aug; 36(4):807-11. PubMed ID: 1977177
    [TBL] [Abstract][Full Text] [Related]  

  • 39. behavior of rats and mice administered active metabolites of fluphenazine, 7-hydroxy-fluphenazine and fluphenazine-sulfoxide.
    Yamada K; Furukawa T
    Arch Int Pharmacodyn Ther; 1980 Nov; 248(1):76-85. PubMed ID: 7194019
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Emergence of oral and locomotor activity in chronic haloperidol-treated rats following cortical N-methyl-D-aspartate stimulation.
    Grimm JW; Kruzich PJ; See RE
    Pharmacol Biochem Behav; 1998 May; 60(1):167-73. PubMed ID: 9610939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.