These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 27986087)

  • 1. A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence.
    Canisius S; Martens JW; Wessels LF
    Genome Biol; 2016 Dec; 17(1):261. PubMed ID: 27986087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BeWith: A Between-Within method to discover relationships between cancer modules via integrated analysis of mutual exclusivity, co-occurrence and functional interactions.
    Dao P; Kim YA; Wojtowicz D; Madan S; Sharan R; Przytycka TM
    PLoS Comput Biol; 2017 Oct; 13(10):e1005695. PubMed ID: 29023534
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CM-viewer: Visualizing interaction network of co-mutated and mutually exclusively mutated cancer genes.
    Zhou N; Hu Z; Wu C; Bao J
    Biosystems; 2018 Apr; 166():37-42. PubMed ID: 29278730
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MEMCover: integrated analysis of mutual exclusivity and functional network reveals dysregulated pathways across multiple cancer types.
    Kim YA; Cho DY; Dao P; Przytycka TM
    Bioinformatics; 2015 Jun; 31(12):i284-92. PubMed ID: 26072494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying mutual exclusivity across cancer genomes: computational approaches to discover genetic interaction and reveal tumor vulnerability.
    Deng Y; Luo S; Deng C; Luo T; Yin W; Zhang H; Zhang Y; Zhang X; Lan Y; Ping Y; Xiao Y; Li X
    Brief Bioinform; 2019 Jan; 20(1):254-266. PubMed ID: 28968730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient algorithms to discover alterations with complementary functional association in cancer.
    Sarto Basso R; Hochbaum DS; Vandin F
    PLoS Comput Biol; 2019 May; 15(5):e1006802. PubMed ID: 31120875
    [TBL] [Abstract][Full Text] [Related]  

  • 7. SSA-ME Detection of cancer driver genes using mutual exclusivity by small subnetwork analysis.
    Pulido-Tamayo S; Weytjens B; De Maeyer D; Marchal K
    Sci Rep; 2016 Nov; 6():36257. PubMed ID: 27808240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identifying Driver Genomic Alterations in Cancers by Searching Minimum-Weight, Mutually Exclusive Sets.
    Lu S; Lu KN; Cheng SY; Hu B; Ma X; Nystrom N; Lu X
    PLoS Comput Biol; 2015 Aug; 11(8):e1004257. PubMed ID: 26317392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A forward selection algorithm to identify mutually exclusive alterations in cancer studies.
    Zhang Z; Yang Y; Zhou Y; Fang H; Yuan M; Sasser K; Hamadeh H; Xu XS
    J Hum Genet; 2021 May; 66(5):509-518. PubMed ID: 33177701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modeling mutual exclusivity of cancer mutations.
    Szczurek E; Beerenwinkel N
    PLoS Comput Biol; 2014 Mar; 10(3):e1003503. PubMed ID: 24675718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of driver pathways using mutated gene network in cancer.
    Li F; Gao L; Ma X; Yang X
    Mol Biosyst; 2016 Jun; 12(7):2135-41. PubMed ID: 27118146
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Modeling Approach to Explain Mutually Exclusive and Co-Occurring Genetic Alterations in Bladder Tumorigenesis.
    Remy E; Rebouissou S; Chaouiya C; Zinovyev A; Radvanyi F; Calzone L
    Cancer Res; 2015 Oct; 75(19):4042-52. PubMed ID: 26238783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A latent variable model for evaluating mutual exclusivity and co-occurrence between driver mutations in cancer.
    Shuaibi A; Chitra U; Raphael BJ
    bioRxiv; 2024 Apr; ():. PubMed ID: 38712136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MEScan: a powerful statistical framework for genome-scale mutual exclusivity analysis of cancer mutations.
    Liu S; Liu J; Xie Y; Zhai T; Hinderer EW; Stromberg AJ; Vanderford NL; Kolesar JM; Moseley HNB; Chen L; Liu C; Wang C
    Bioinformatics; 2021 Jun; 37(9):1189-1197. PubMed ID: 33165532
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A weighted exact test for mutually exclusive mutations in cancer.
    Leiserson MD; Reyna MA; Raphael BJ
    Bioinformatics; 2016 Sep; 32(17):i736-i745. PubMed ID: 27587696
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Systematic identification of cancer driving signaling pathways based on mutual exclusivity of genomic alterations.
    Babur Ö; Gönen M; Aksoy BA; Schultz N; Ciriello G; Sander C; Demir E
    Genome Biol; 2015 Feb; 16(1):45. PubMed ID: 25887147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using MEMo to discover mutual exclusivity modules in cancer.
    Ciriello G; Cerami E; Aksoy BA; Sander C; Schultz N
    Curr Protoc Bioinformatics; 2013 Mar; Chapter 8():8.17.1-8.17.12. PubMed ID: 23504936
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutual exclusivity analysis identifies oncogenic network modules.
    Ciriello G; Cerami E; Sander C; Schultz N
    Genome Res; 2012 Feb; 22(2):398-406. PubMed ID: 21908773
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WeSME: uncovering mutual exclusivity of cancer drivers and beyond.
    Kim YA; Madan S; Przytycka TM
    Bioinformatics; 2017 Mar; 33(6):814-821. PubMed ID: 27153670
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Detection of Combinatorial Mutational Patterns in Human Cancer Genomes by Exclusivity Analysis.
    Tan H; Zhou X
    Methods Mol Biol; 2018; 1711():3-11. PubMed ID: 29344882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.