BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27986311)

  • 1. Lignocellulose-degrading enzymes, free-radical transformations during composting of lignocellulosic waste and biothermal phases in small-scale reactors.
    Bohacz J
    Sci Total Environ; 2017 Feb; 580():744-754. PubMed ID: 27986311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial strategies and biochemical activity during lignocellulosic waste composting in relation to the occurring biothermal phases.
    Bohacz J
    J Environ Manage; 2018 Jan; 206():1052-1062. PubMed ID: 30029339
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Changes in mineral forms of nitrogen and sulfur and enzymatic activities during composting of lignocellulosic waste and chicken feathers.
    Bohacz J
    Environ Sci Pollut Res Int; 2019 Apr; 26(10):10333-10342. PubMed ID: 30761493
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changes in enzymatic activity in composts containing chicken feathers.
    Bohacz J; Korniłłowicz-Kowalska T
    Bioresour Technol; 2009 Jul; 100(14):3604-12. PubMed ID: 19324546
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modification of post-industrial lignin by fungal strains of the genus Trichoderma isolated from different composting stages.
    Bohacz J; Korniłłowicz-Kowalska T
    J Environ Manage; 2020 Jul; 266():110573. PubMed ID: 32314744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved lignocellulose-degrading performance during straw composting from diverse sources with actinomycetes inoculation by regulating the key enzyme activities.
    Wei Y; Wu D; Wei D; Zhao Y; Wu J; Xie X; Zhang R; Wei Z
    Bioresour Technol; 2019 Jan; 271():66-74. PubMed ID: 30265954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.
    Zhang L; Jia Y; Zhang X; Feng X; Wu J; Wang L; Chen G
    Bioresour Technol; 2016 Jun; 209():402-6. PubMed ID: 26980627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enzymatic profiles associated with the evolution of the lignocellulosic fraction during industrial-scale composting of anthropogenic waste: Comparative analysis.
    Estrella-González MJ; Jurado MM; Suárez-Estrella F; López MJ; López-González JA; Siles-Castellano A; Moreno J
    J Environ Manage; 2019 Oct; 248():109312. PubMed ID: 31394475
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial community profiles on feathers during composting as determined by terminal restriction fragment length polymorphism analysis of 16S rDNA genes.
    Tiquia SM; Ichida JM; Keener HM; Elwell DL; Burtt EH; Michel FC
    Appl Microbiol Biotechnol; 2005 May; 67(3):412-9. PubMed ID: 15614566
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the C/N ratio on the microbial community and lignocellulose degradation, during branch waste composting.
    Xie Y; Zhou L; Dai J; Chen J; Yang X; Wang X; Wang Z; Feng L
    Bioprocess Biosyst Eng; 2022 Jul; 45(7):1163-1174. PubMed ID: 35661257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved lignocellulose degradation efficiency based on Fenton pretreatment during rice straw composting.
    Wu D; Wei Z; Zhao Y; Zhao X; Mohamed TA; Zhu L; Wu J; Meng Q; Yao C; Zhao R
    Bioresour Technol; 2019 Dec; 294():122132. PubMed ID: 31526931
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diversity of two-domain laccase-like multicopper oxidase genes in Streptomyces spp.: identification of genes potentially involved in extracellular activities and lignocellulose degradation during composting of agricultural waste.
    Lu L; Zeng G; Fan C; Zhang J; Chen A; Chen M; Jiang M; Yuan Y; Wu H; Lai M; He Y
    Appl Environ Microbiol; 2014 Jun; 80(11):3305-14. PubMed ID: 24657870
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The initial soil microbiota impacts the potential for lignocellulose degradation during soil solarization.
    Fernández-Bayo JD; Hestmark KV; Claypool JT; Harrold DR; Randall TE; Achmon Y; Stapleton JJ; Simmons CW; VanderGheynst JS
    J Appl Microbiol; 2019 Jun; 126(6):1729-1741. PubMed ID: 30895681
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Isolation and characterization of a novel thermotolerant alkali lignin-degrading bacterium Aneurinibacillus sp. LD3 and its application in food waste composting.
    Wu X; Amanze C; Wang J; Yu Z; Shen L; Wu X; Li J; Yu R; Liu Y; Zeng W
    Chemosphere; 2022 Nov; 307(Pt 3):135859. PubMed ID: 35987270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of growth and succession of bacterial and fungal communities during composting of feather waste.
    Korniłłowicz-Kowalska T; Bohacz J
    Bioresour Technol; 2010 Feb; 101(4):1268-76. PubMed ID: 19819132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microbial community succession and lignocellulose degradation during agricultural waste composting.
    Yu H; Zeng G; Huang H; Xi X; Wang R; Huang D; Huang G; Li J
    Biodegradation; 2007 Dec; 18(6):793-802. PubMed ID: 17308882
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combining woody biomass for combustion with green waste composting: Effect of removal of woody biomass on compost quality.
    Vandecasteele B; Boogaerts C; Vandaele E
    Waste Manag; 2016 Dec; 58():169-180. PubMed ID: 27650630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-composting of rose oil processing waste with caged layer manure and straw or sawdust: effects of carbon source and C/N ratio on decomposition.
    Onursal E; Ekinci K
    Waste Manag Res; 2015 Apr; 33(4):332-8. PubMed ID: 25784689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biochemical changes and GHG emissions during composting of lignocellulosic residues with different N-rich by-products.
    Cayuela ML; Sánchez-Monedero MA; Roig A; Sinicco T; Mondini C
    Chemosphere; 2012 Jun; 88(2):196-203. PubMed ID: 22464856
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The physical structure of compost and C and N utilization during composting and mushroom growth in Agaricus bisporus cultivation with rice, wheat, and reed straw-based composts.
    Wang Q; Juan J; Xiao T; Zhang J; Chen H; Song X; Chen M; Huang J
    Appl Microbiol Biotechnol; 2021 May; 105(9):3811-3823. PubMed ID: 33877414
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.