These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 27986597)

  • 1. Literature mining supports a next-generation modeling approach to predict cellular byproduct secretion.
    King ZA; O'Brien EJ; Feist AM; Palsson BO
    Metab Eng; 2017 Jan; 39():220-227. PubMed ID: 27986597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Model-based metabolic engineering enables high yield itaconic acid production by Escherichia coli.
    Harder BJ; Bettenbrock K; Klamt S
    Metab Eng; 2016 Nov; 38():29-37. PubMed ID: 27269589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Generation of an atlas for commodity chemical production in Escherichia coli and a novel pathway prediction algorithm, GEM-Path.
    Campodonico MA; Andrews BA; Asenjo JA; Palsson BO; Feist AM
    Metab Eng; 2014 Sep; 25():140-58. PubMed ID: 25080239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. iSCHRUNK--In Silico Approach to Characterization and Reduction of Uncertainty in the Kinetic Models of Genome-scale Metabolic Networks.
    Andreozzi S; Miskovic L; Hatzimanikatis V
    Metab Eng; 2016 Jan; 33():158-168. PubMed ID: 26474788
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptome-guided parsimonious flux analysis improves predictions with metabolic networks in complex environments.
    Jenior ML; Moutinho TJ; Dougherty BV; Papin JA
    PLoS Comput Biol; 2020 Apr; 16(4):e1007099. PubMed ID: 32298268
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-scale model of metabolism and gene expression provides a multi-scale description of acid stress responses in Escherichia coli.
    Du B; Yang L; Lloyd CJ; Fang X; Palsson BO
    PLoS Comput Biol; 2019 Dec; 15(12):e1007525. PubMed ID: 31809503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A genome-scale metabolic flux model of Escherichia coli K-12 derived from the EcoCyc database.
    Weaver DS; Keseler IM; Mackie A; Paulsen IT; Karp PD
    BMC Syst Biol; 2014 Jun; 8():79. PubMed ID: 24974895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metabolic flux responses to deletion of 20 core enzymes reveal flexibility and limits of E. coli metabolism.
    Long CP; Antoniewicz MR
    Metab Eng; 2019 Sep; 55():249-257. PubMed ID: 31390539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic regulation of metabolic flux in engineered bacteria using a pathway-independent quorum-sensing circuit.
    Gupta A; Reizman IM; Reisch CR; Prather KL
    Nat Biotechnol; 2017 Mar; 35(3):273-279. PubMed ID: 28191902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of metabolic fluxes from gene expression data with Huber penalty convex optimization function.
    Zhang SW; Gou WL; Li Y
    Mol Biosyst; 2017 May; 13(5):901-909. PubMed ID: 28338129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of physiological responses to 22 gene knockouts in Escherichia coli central carbon metabolism.
    Long CP; Gonzalez JE; Sandoval NR; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():102-113. PubMed ID: 27212692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction and modeling protein translocation and compartmentalization in Escherichia coli at the genome-scale.
    Liu JK; O'Brien EJ; Lerman JA; Zengler K; Palsson BO; Feist AM
    BMC Syst Biol; 2014 Sep; 8():110. PubMed ID: 25227965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comprehensive analysis of glucose and xylose metabolism in Escherichia coli under aerobic and anaerobic conditions by
    Gonzalez JE; Long CP; Antoniewicz MR
    Metab Eng; 2017 Jan; 39():9-18. PubMed ID: 27840237
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of genome-scale metabolic network models using experimentally measured flux profiles.
    Herrgård MJ; Fong SS; Palsson BØ
    PLoS Comput Biol; 2006 Jul; 2(7):e72. PubMed ID: 16839195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum.
    Wiback SJ; Mahadevan R; Palsson BØ
    Biotechnol Bioeng; 2004 May; 86(3):317-31. PubMed ID: 15083512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural systems biology evaluation of metabolic thermotolerance in Escherichia coli.
    Chang RL; Andrews K; Kim D; Li Z; Godzik A; Palsson BO
    Science; 2013 Jun; 340(6137):1220-3. PubMed ID: 23744946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Constrained Allocation Flux Balance Analysis.
    Mori M; Hwa T; Martin OC; De Martino A; Marinari E
    PLoS Comput Biol; 2016 Jun; 12(6):e1004913. PubMed ID: 27355325
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting internal cell fluxes at sub-optimal growth.
    Schultz A; Qutub AA
    BMC Syst Biol; 2015 Apr; 9():18. PubMed ID: 25890056
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.