These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
295 related articles for article (PubMed ID: 27986827)
1. Potential of semiarid soil from Caatinga biome as a novel source for mining lignocellulose-degrading enzymes. Lacerda Júnior GV; Noronha MF; de Sousa ST; Cabral L; Domingos DF; Sáber ML; de Melo IS; Oliveira VM FEMS Microbiol Ecol; 2017 Feb; 93(2):. PubMed ID: 27986827 [TBL] [Abstract][Full Text] [Related]
2. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. Oh HN; Park D; Seong HJ; Kim D; Sul WJ J Microbiol; 2019 Oct; 57(10):865-873. PubMed ID: 31571125 [TBL] [Abstract][Full Text] [Related]
3. Polysaccharide Degradation Capability of Actinomycetales Soil Isolates from a Semiarid Grassland of the Colorado Plateau. Yeager CM; Gallegos-Graves V; Dunbar J; Hesse CN; Daligault H; Kuske CR Appl Environ Microbiol; 2017 Mar; 83(6):. PubMed ID: 28087533 [TBL] [Abstract][Full Text] [Related]
4. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. Wilhelm RC; Singh R; Eltis LD; Mohn WW ISME J; 2019 Feb; 13(2):413-429. PubMed ID: 30258172 [TBL] [Abstract][Full Text] [Related]
5. Metagenomic analyses reveal no differences in genes involved in cellulose degradation under different tillage treatments. de Vries M; Schöler A; Ertl J; Xu Z; Schloter M FEMS Microbiol Ecol; 2015 Jul; 91(7):. PubMed ID: 26109134 [TBL] [Abstract][Full Text] [Related]
6. Cellulase-Hemicellulase Activities and Bacterial Community Composition of Different Soils from Algerian Ecosystems. Houfani AA; Větrovský T; Navarrete OU; Štursová M; Tláskal V; Beiko RG; Boucherba N; Baldrian P; Benallaoua S; Jorquera MA Microb Ecol; 2019 Apr; 77(3):713-725. PubMed ID: 30209585 [TBL] [Abstract][Full Text] [Related]
7. Lignocellulolytic systems of soil bacteria: A vast and diverse toolbox for biotechnological conversion processes. López-Mondéjar R; Algora C; Baldrian P Biotechnol Adv; 2019 Nov; 37(6):107374. PubMed ID: 30910513 [TBL] [Abstract][Full Text] [Related]
8. Efficient screening of potential cellulases and hemicellulases produced by Bosea sp. FBZP-16 using the combination of enzyme assays and genome analysis. Houfani AA; Větrovský T; Baldrian P; Benallaoua S World J Microbiol Biotechnol; 2017 Feb; 33(2):29. PubMed ID: 28058637 [TBL] [Abstract][Full Text] [Related]
9. Diversity of Microbial Carbohydrate-Active enZYmes (CAZYmes) Associated with Freshwater and Soil Samples from Caatinga Biome. Andrade AC; Fróes A; Lopes FÁC; Thompson FL; Krüger RH; Dinsdale E; Bruce T Microb Ecol; 2017 Jul; 74(1):89-105. PubMed ID: 28070679 [TBL] [Abstract][Full Text] [Related]
10. Composting-Like Conditions Are More Efficient for Enrichment and Diversity of Organisms Containing Cellulase-Encoding Genes than Submerged Cultures. Heiss-Blanquet S; Fayolle-Guichard F; Lombard V; Hébert A; Coutinho PM; Groppi A; Barre A; Henrissat B PLoS One; 2016; 11(12):e0167216. PubMed ID: 27936240 [TBL] [Abstract][Full Text] [Related]
11. Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island. Oh HN; Lee TK; Park JW; No JH; Kim D; Sul WJ J Microbiol Biotechnol; 2017 Sep; 27(9):1670-1680. PubMed ID: 28633514 [TBL] [Abstract][Full Text] [Related]
12. Bioprospecting metagenomics of a microbial community on cotton degradation: Mining for new glycoside hydrolases. Zhang G; Liu P; Zhang L; Wei W; Wang X; Wei D; Wang W J Biotechnol; 2016 Sep; 234():35-42. PubMed ID: 27460447 [TBL] [Abstract][Full Text] [Related]
14. Microbial carbohydrate active enzyme (CAZyme) genes and diversity from Menagesha Suba natural forest soils of Ethiopia as revealed by shotgun metagenomic sequencing. Sime AM; Kifle BA; Woldesemayat AA; Gemeda MT BMC Microbiol; 2024 Aug; 24(1):285. PubMed ID: 39090559 [TBL] [Abstract][Full Text] [Related]
15. Metagenomic analysis of the Rhinopithecus bieti fecal microbiome reveals a broad diversity of bacterial and glycoside hydrolase profiles related to lignocellulose degradation. Xu B; Xu W; Li J; Dai L; Xiong C; Tang X; Yang Y; Mu Y; Zhou J; Ding J; Wu Q; Huang Z BMC Genomics; 2015 Mar; 16(1):174. PubMed ID: 25887697 [TBL] [Abstract][Full Text] [Related]
16. Characterization of novel lignocellulose-degrading enzymes from the porcupine microbiome using synthetic metagenomics. Thornbury M; Sicheri J; Slaine P; Getz LJ; Finlayson-Trick E; Cook J; Guinard C; Boudreau N; Jakeman D; Rohde J; McCormick C PLoS One; 2019; 14(1):e0209221. PubMed ID: 30601862 [TBL] [Abstract][Full Text] [Related]
17. Potential of cometabolic transformation of polysaccharides and lignin in lignocellulose by soil Actinobacteria. Větrovský T; Steffen KT; Baldrian P PLoS One; 2014; 9(2):e89108. PubMed ID: 24551229 [TBL] [Abstract][Full Text] [Related]
18. Metagenomic Insight into Lignocellulose Degradation of the Thermophilic Microbial Consortium TMC7. Wang Y; Wang C; Chen Y; Chen B; Guo P; Cui Z J Microbiol Biotechnol; 2021 Aug; 31(8):1123-1133. PubMed ID: 34226407 [TBL] [Abstract][Full Text] [Related]
19. Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Mhuantong W; Charoensawan V; Kanokratana P; Tangphatsornruang S; Champreda V Biotechnol Biofuels; 2015; 8():16. PubMed ID: 25709713 [TBL] [Abstract][Full Text] [Related]