These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 27987049)
1. Inter- and intraannual growth patterns of urban small-leaved lime (Tilia cordata mill.) at two public squares with contrasting microclimatic conditions. Moser A; Rahman MA; Pretzsch H; Pauleit S; Rötzer T Int J Biometeorol; 2017 Jun; 61(6):1095-1107. PubMed ID: 27987049 [TBL] [Abstract][Full Text] [Related]
2. A single tree model to consistently simulate cooling, shading, and pollution uptake of urban trees. Pace R; De Fino F; Rahman MA; Pauleit S; Nowak DJ; Grote R Int J Biometeorol; 2021 Feb; 65(2):277-289. PubMed ID: 33070207 [TBL] [Abstract][Full Text] [Related]
3. Environmental control of daily stem growth patterns in five temperate broad-leaved tree species. Köcher P; Horna V; Leuschner C Tree Physiol; 2012 Aug; 32(8):1021-32. PubMed ID: 22659458 [TBL] [Abstract][Full Text] [Related]
4. Urban climate modifies tree growth in Berlin. Dahlhausen J; Rötzer T; Biber P; Uhl E; Pretzsch H Int J Biometeorol; 2018 May; 62(5):795-808. PubMed ID: 29218447 [TBL] [Abstract][Full Text] [Related]
5. Vertical air temperature gradients under the shade of two contrasting urban tree species during different types of summer days. Rahman MA; Moser A; Gold A; Rötzer T; Pauleit S Sci Total Environ; 2018 Aug; 633():100-111. PubMed ID: 29573677 [TBL] [Abstract][Full Text] [Related]
6. Stem water storage in five coexisting temperate broad-leaved tree species: significance, temporal dynamics and dependence on tree functional traits. Köcher P; Horna V; Leuschner C Tree Physiol; 2013 Aug; 33(8):817-32. PubMed ID: 23999137 [TBL] [Abstract][Full Text] [Related]
7. Process based simulation of tree growth and ecosystem services of urban trees under present and future climate conditions. Rötzer T; Rahman MA; Moser-Reischl A; Pauleit S; Pretzsch H Sci Total Environ; 2019 Aug; 676():651-664. PubMed ID: 31051370 [TBL] [Abstract][Full Text] [Related]
8. Tree species from two contrasting habitats for use in harsh urban environments respond differently to extreme drought. Stratópoulos LMF; Zhang C; Duthweiler S; Häberle KH; Rötzer T; Xu C; Pauleit S Int J Biometeorol; 2019 Feb; 63(2):197-208. PubMed ID: 30542767 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of the growth, adaption, and ecosystem services of two potentially-introduced urban tree species in Guangzhou under drought stress. Zhang M; Ni Y; Li M Sci Rep; 2023 Mar; 13(1):3563. PubMed ID: 36864292 [TBL] [Abstract][Full Text] [Related]
10. Urban tree species show the same hydraulic response to vapor pressure deficit across varying tree size and environmental conditions. Chen L; Zhang Z; Ewers BE PLoS One; 2012; 7(10):e47882. PubMed ID: 23118904 [TBL] [Abstract][Full Text] [Related]
11. Transpiration of urban trees and its cooling effect in a high latitude city. Konarska J; Uddling J; Holmer B; Lutz M; Lindberg F; Pleijel H; Thorsson S Int J Biometeorol; 2016 Jan; 60(1):159-72. PubMed ID: 26048702 [TBL] [Abstract][Full Text] [Related]
12. Transpiration characteristics of a rubber plantation in central Cambodia. Kobayashi N; Kumagai T; Miyazawa Y; Matsumoto K; Tateishi M; Lim TK; Mudd RG; Ziegler AD; Giambelluca TW; Yin S Tree Physiol; 2014 Mar; 34(3):285-301. PubMed ID: 24646689 [TBL] [Abstract][Full Text] [Related]
13. Water availability as dominant control of heat stress responses in two contrasting tree species. Ruehr NK; Gast A; Weber C; Daub B; Arneth A Tree Physiol; 2016 Feb; 36(2):164-78. PubMed ID: 26491055 [TBL] [Abstract][Full Text] [Related]
14. Fractal dimension of tree crowns explains species functional-trait responses to urban environments at different scales. Arseniou G; MacFarlane DW Ecol Appl; 2021 Jun; 31(4):e02297. PubMed ID: 33427362 [TBL] [Abstract][Full Text] [Related]
15. Accumulation of particulate matter, heavy metals, and polycyclic aromatic hydrocarbons on the leaves of Tilia cordata Mill. in five Polish cities with different levels of air pollution. Popek R; Łukowski A; Bates C; Oleksyn J Int J Phytoremediation; 2017 Dec; 19(12):1134-1141. PubMed ID: 28532158 [TBL] [Abstract][Full Text] [Related]
16. Transpiration rates of urban trees, Aesculus chinensis. Wang H; Wang X; Zhao P; Zheng H; Ren Y; Gao F; Ouyang Z J Environ Sci (China); 2012; 24(7):1278-87. PubMed ID: 23513449 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the effects of different tree species on urban microclimate. Irmak MA; Yilmaz S; Mutlu E; Yilmaz H Environ Sci Pollut Res Int; 2018 Jun; 25(16):15802-15822. PubMed ID: 29582327 [TBL] [Abstract][Full Text] [Related]
18. Eastern US deciduous tree species respond dissimilarly to declining soil moisture but similarly to rising evaporative demand. Denham SO; Oishi AC; Miniat CF; Wood JD; Yi K; Benson MC; Novick KA Tree Physiol; 2021 Jun; 41(6):944-959. PubMed ID: 33185239 [TBL] [Abstract][Full Text] [Related]
19. Selecting tree species with high transpiration and drought avoidance to optimise runoff reduction in passive irrigation systems. Thom JK; Livesley SJ; Fletcher TD; Farrell C; Arndt SK; Konarska J; Szota C Sci Total Environ; 2022 Mar; 812():151466. PubMed ID: 34780836 [TBL] [Abstract][Full Text] [Related]
20. Transpiration and cooling potential of tropical urban trees from different native habitats. Tan PY; Wong NH; Tan CL; Jusuf SK; Schmiele K; Chiam ZQ Sci Total Environ; 2020 Feb; 705():135764. PubMed ID: 31806315 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]