These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27987191)

  • 1. Continuous Hydrogen Production from Agricultural Wastewaters at Thermophilic and Hyperthermophilic Temperatures.
    Ramos LR; Silva EL
    Appl Biochem Biotechnol; 2017 Jun; 182(2):846-869. PubMed ID: 27987191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving EGSB reactor performance for simultaneous bioenergy and organic acid production from cheese whey via continuous biological H
    Ramos LR; Silva EL
    Biotechnol Lett; 2017 Jul; 39(7):983-991. PubMed ID: 28315058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biohydrogen production in an AFBR using sugarcane molasses.
    Chaves TC; Gois GNSB; Peiter FS; Vich DV; de Amorim ELC
    Bioprocess Biosyst Eng; 2021 Feb; 44(2):307-316. PubMed ID: 32978660
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic Biodegradation of Biodiesel Industry Wastewater in Mesophilic and Thermophilic Fluidized Bed Reactors: Enhancing Treatment and Methane Recovery.
    da Costa TB; Simões AN; de Menezes CA; Silva EL
    Appl Biochem Biotechnol; 2021 Oct; 193(10):3336-3350. PubMed ID: 34185261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-Fermentation of Cheese Whey and Crude Glycerol in EGSB Reactor as a Strategy to Enhance Continuous Hydrogen and Propionic Acid Production.
    Lopes HJS; Ramos LR; Silva EL
    Appl Biochem Biotechnol; 2017 Nov; 183(3):712-728. PubMed ID: 28321784
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of nanoparticles to increase biological hydrogen production: the difference in metabolic pathways in batch and continuous reactors.
    Moura AGL; Rabelo CABS; Silva EL; Varesche MBA
    Environ Technol; 2024 Jun; 45(15):3095-3103. PubMed ID: 37129278
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Organic loading rate impact on biohydrogen production and microbial communities at anaerobic fluidized thermophilic bed reactors treating sugarcane stillage.
    Santos SC; Rosa PR; Sakamoto IK; Varesche MB; Silva EL
    Bioresour Technol; 2014 May; 159():55-63. PubMed ID: 24632626
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling methane and hydrogen production from cheese whey in an EGSB reactor by changing the HRT.
    Ramos LR; de Menezes CA; Soares LA; Sakamoto IK; Varesche MBA; Silva EL
    Bioprocess Biosyst Eng; 2020 Apr; 43(4):673-684. PubMed ID: 31834467
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of biohythane from food waste via an integrated system of continuously stirred tank and anaerobic fixed bed reactors.
    Yeshanew MM; Frunzo L; Pirozzi F; Lens PNL; Esposito G
    Bioresour Technol; 2016 Nov; 220():312-322. PubMed ID: 27591517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition.
    Rosa PR; Santos SC; Sakamoto IK; Varesche MB; Silva EL
    Bioresour Technol; 2014 Jun; 161():10-19. PubMed ID: 24681681
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of organic loading rate on the anaerobic treatment of sugarcane vinasse and biogás production in fluidized bed reactor.
    Siqueira LM; Damiano ES; Silva EL
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(13):1707-16. PubMed ID: 23947710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biohydrogen production from wheat straw hydrolysate by dark fermentation using extreme thermophilic mixed culture.
    Kongjan P; O-Thong S; Kotay M; Min B; Angelidaki I
    Biotechnol Bioeng; 2010 Apr; 105(5):899-908. PubMed ID: 19998285
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Valorization of the Crude Glycerol for Propionic Acid Production Using an Anaerobic Fluidized Bed Reactor with Grounded Tires as Support Material.
    Nazareth TC; de Oliveira Paranhos AG; Ramos LR; Silva EL
    Appl Biochem Biotechnol; 2018 Oct; 186(2):400-413. PubMed ID: 29644593
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One versus two-stage codigestion of sugarcane vinasse and glycerol: Assessing combinations at mesophilic and (hyper) thermophilic conditions.
    Menezes CA; Almeida PS; Camargo FP; Delforno TP; Oliveira VM; Sakamoto IK; Varesche MBA; Silva EL
    Sci Total Environ; 2023 Dec; 904():166294. PubMed ID: 37586502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. One waste and two products: choosing the best operational temperature and hydraulic retention time to recover hydrogen or 1,3-propanediol from glycerol fermentation.
    Simões AN; da Costa TB; de Menezes CA; Silva EL
    Bioprocess Biosyst Eng; 2021 Dec; 44(12):2491-2502. PubMed ID: 34387720
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biohydrogen production from xylose at extreme thermophilic temperatures (70 degrees C) by mixed culture fermentation.
    Kongjan P; Min B; Angelidaki I
    Water Res; 2009 Mar; 43(5):1414-24. PubMed ID: 19147170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids: partial acidification and methanation.
    Yang K; Yu Y; Hwang S
    Water Res; 2003 May; 37(10):2467-77. PubMed ID: 12727259
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: A review.
    Barca C; Soric A; Ranava D; Giudici-Orticoni MT; Ferrasse JH
    Bioresour Technol; 2015 Jun; 185():386-98. PubMed ID: 25746594
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-efficiency hydrogen production by an anaerobic, thermophilic enrichment culture from an Icelandic hot spring.
    Koskinen PE; Lay CH; Puhakka JA; Lin PJ; Wu SY; Orlygsson J; Lin CY
    Biotechnol Bioeng; 2008 Nov; 101(4):665-78. PubMed ID: 18814296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of organic loading rate and fill time on the biohydrogen production in a mechanically stirred AnSBBR treating synthetic sucrose-based wastewater.
    Inoue RK; Lima DM; Rodrigues JA; Ratusznei SM; Zaiat M
    Appl Biochem Biotechnol; 2014 Nov; 174(6):2326-49. PubMed ID: 25178421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.