These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
475 related articles for article (PubMed ID: 27987263)
21. Environmental DNA metabarcoding as a useful tool for evaluating terrestrial mammal diversity in tropical forests. Mena JL; Yagui H; Tejeda V; Bonifaz E; Bellemain E; Valentini A; Tobler MW; Sánchez-Vendizú P; Lyet A Ecol Appl; 2021 Jul; 31(5):e02335. PubMed ID: 33780592 [TBL] [Abstract][Full Text] [Related]
22. Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Jeunen GJ; Knapp M; Spencer HG; Lamare MD; Taylor HR; Stat M; Bunce M; Gemmell NJ Mol Ecol Resour; 2019 Mar; 19(2):426-438. PubMed ID: 30576077 [TBL] [Abstract][Full Text] [Related]
23. Spatial Representativeness of Environmental DNA Metabarcoding Signal for Fish Biodiversity Assessment in a Natural Freshwater System. Civade R; Dejean T; Valentini A; Roset N; Raymond JC; Bonin A; Taberlet P; Pont D PLoS One; 2016; 11(6):e0157366. PubMed ID: 27359116 [TBL] [Abstract][Full Text] [Related]
24. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Evans NT; Olds BP; Renshaw MA; Turner CR; Li Y; Jerde CL; Mahon AR; Pfrender ME; Lamberti GA; Lodge DM Mol Ecol Resour; 2016 Jan; 16(1):29-41. PubMed ID: 26032773 [TBL] [Abstract][Full Text] [Related]
25. Validating eDNA measurements of the richness and abundance of anurans at a large scale. Li W; Hou X; Xu C; Qin M; Wang S; Wei L; Wang Y; Liu X; Li Y J Anim Ecol; 2021 Jun; 90(6):1466-1479. PubMed ID: 33694188 [TBL] [Abstract][Full Text] [Related]
26. Usefulness and limitations of sample pooling for environmental DNA metabarcoding of freshwater fish communities. Sato H; Sogo Y; Doi H; Yamanaka H Sci Rep; 2017 Nov; 7(1):14860. PubMed ID: 29093520 [TBL] [Abstract][Full Text] [Related]
27. Environmental DNA metabarcoding reveals local fish communities in a species-rich coastal sea. Yamamoto S; Masuda R; Sato Y; Sado T; Araki H; Kondoh M; Minamoto T; Miya M Sci Rep; 2017 Jan; 7():40368. PubMed ID: 28079122 [TBL] [Abstract][Full Text] [Related]
28. Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data. Ficetola GF; Pansu J; Bonin A; Coissac E; Giguet-Covex C; De Barba M; Gielly L; Lopes CM; Boyer F; Pompanon F; Rayé G; Taberlet P Mol Ecol Resour; 2015 May; 15(3):543-56. PubMed ID: 25327646 [TBL] [Abstract][Full Text] [Related]
30. Environmental DNA and visual encounter surveys for amphibian biomonitoring in aquatic environments of the Ecuadorian Amazon. Quilumbaquin W; Carrera-Gonzalez A; Van der Heyden C; Ortega-Andrade HM PeerJ; 2023; 11():e15455. PubMed ID: 37456876 [TBL] [Abstract][Full Text] [Related]
31. Standards for Methods Utilizing Environmental DNA for Detection of Fish Species. Shu L; Ludwig A; Peng Z Genes (Basel); 2020 Mar; 11(3):. PubMed ID: 32168762 [TBL] [Abstract][Full Text] [Related]
32. Monitoring freshwater fish communities in large rivers using environmental DNA metabarcoding and a long-term electrofishing survey. Goutte A; Molbert N; Guérin S; Richoux R; Rocher V J Fish Biol; 2020 Aug; 97(2):444-452. PubMed ID: 32412670 [TBL] [Abstract][Full Text] [Related]
33. Scanning amplicons with CRISPR-Dx detects endangered amphibians in environmental DNA. Leugger F; Schmidlin M; Lüthi M; Kontarakis Z; Pellissier L Mol Ecol Resour; 2024 Nov; 24(8):e14009. PubMed ID: 39152661 [TBL] [Abstract][Full Text] [Related]
34. Harnessing the power of eDNA metabarcoding for the detection of deep-sea fishes. McClenaghan B; Fahner N; Cote D; Chawarski J; McCarthy A; Rajabi H; Singer G; Hajibabaei M PLoS One; 2020; 15(11):e0236540. PubMed ID: 33147221 [TBL] [Abstract][Full Text] [Related]
35. eDNA metabarcoding as a promising conservation tool for monitoring fish diversity in a coastal wetland of the Pearl River Estuary compared to bottom trawling. Zou K; Chen J; Ruan H; Li Z; Guo W; Li M; Liu L Sci Total Environ; 2020 Feb; 702():134704. PubMed ID: 31726353 [TBL] [Abstract][Full Text] [Related]
36. Optimizing environmental DNA sampling effort for fish inventories in tropical streams and rivers. Cantera I; Cilleros K; Valentini A; Cerdan A; Dejean T; Iribar A; Taberlet P; Vigouroux R; Brosse S Sci Rep; 2019 Feb; 9(1):3085. PubMed ID: 30816174 [TBL] [Abstract][Full Text] [Related]
37. Capture enrichment of aquatic environmental DNA: A first proof of concept. Wilcox TM; Zarn KE; Piggott MP; Young MK; McKelvey KS; Schwartz MK Mol Ecol Resour; 2018 Nov; 18(6):1392-1401. PubMed ID: 30009542 [TBL] [Abstract][Full Text] [Related]
38. Effects of sampling strategies and DNA extraction methods on eDNA metabarcoding: A case study of estuarine fish diversity monitoring. Ruan HT; Wang RL; Li HT; Liu L; Kuang TX; Li M; Zou KS Zool Res; 2022 Mar; 43(2):192-204. PubMed ID: 35084125 [TBL] [Abstract][Full Text] [Related]
39. Monitoring of spatiotemporal occupancy patterns of fish and amphibian species in a lentic aquatic system using environmental DNA. Brys R; Haegeman A; Halfmaerten D; Neyrinck S; Staelens A; Auwerx J; Ruttink T Mol Ecol; 2021 Jul; 30(13):3097-3110. PubMed ID: 33222312 [TBL] [Abstract][Full Text] [Related]
40. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Stat M; Huggett MJ; Bernasconi R; DiBattista JD; Berry TE; Newman SJ; Harvey ES; Bunce M Sci Rep; 2017 Sep; 7(1):12240. PubMed ID: 28947818 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]