BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27987440)

  • 1. Elucidating carbon sources driving microbial metabolism during oil sands reclamation.
    Bradford LM; Ziolkowski LA; Goad C; Warren LA; Slater GF
    J Environ Manage; 2017 Mar; 188():246-254. PubMed ID: 27987440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct evaluation of in situ biodegradation in Athabasca oil sands tailings ponds using natural abundance radiocarbon.
    Ahad JM; Pakdel H
    Environ Sci Technol; 2013 Sep; 47(18):10214-22. PubMed ID: 23957578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. S reactivity of an oil sands composite tailings deposit undergoing reclamation wetland construction.
    Reid ML; Warren LA
    J Environ Manage; 2016 Jan; 166():321-9. PubMed ID: 26520039
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of microbial carbon sources and cycling during remediation of petroleum hydrocarbon impacted soil using natural abundance (14)C analysis of PLFA.
    Cowie BR; Greenberg BM; Slater GF
    Environ Sci Technol; 2010 Apr; 44(7):2322-7. PubMed ID: 20196610
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Do peat amendments to oil sands wet sediments affect Carex aquatilis biomass for reclamation success?
    Roy MC; Mollard FP; Foote AL
    J Environ Manage; 2014 Jun; 139():154-63. PubMed ID: 24694323
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimulation of Microbially Mediated Arsenic Release in Bangladesh Aquifers by Young Carbon Indicated by Radiocarbon Analysis of Sedimentary Bacterial Lipids.
    Whaley-Martin KJ; Mailloux BJ; van Geen A; Bostick BC; Silvern RF; Kim C; Ahmed KM; Choudhury I; Slater GF
    Environ Sci Technol; 2016 Jul; 50(14):7353-63. PubMed ID: 27333443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The microbiology of oil sands tailings: past, present, future.
    Foght JM; Gieg LM; Siddique T
    FEMS Microbiol Ecol; 2017 May; 93(5):. PubMed ID: 28334283
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variability in carbon uptake and (re)cycling in Antarctic cryptoendolithic microbial ecosystems demonstrated through radiocarbon analysis of organic biomarkers.
    Brady AL; Goordial J; Sun HJ; Whyte LG; Slater GF
    Geobiology; 2018 Jan; 16(1):62-79. PubMed ID: 29076278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tracing biogeochemical and microbial variability over a complete oil sand mining and recultivation process.
    Noah M; Lappé M; Schneider B; Vieth-Hillebrand A; Wilkes H; Kallmeyer J
    Sci Total Environ; 2014 Nov; 499():297-310. PubMed ID: 25201817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Total and methyl mercury concentrations in sediment and water of a constructed wetland in the Athabasca Oil Sands Region.
    Oswald CJ; Carey SK
    Environ Pollut; 2016 Jun; 213():628-637. PubMed ID: 27017139
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial abundance and composition in marine sediments beneath the Ross Ice Shelf, Antarctica.
    Carr SA; Vogel SW; Dunbar RB; Brandes J; Spear JR; Levy R; Naish TR; Powell RD; Wakeham SG; Mandernack KW
    Geobiology; 2013 Jul; 11(4):377-95. PubMed ID: 23682649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Levels of polycyclic aromatic hydrocarbons and dibenzothiophenes in wetland sediments and aquatic insects in the oil sands area of northeastern Alberta, Canada.
    Wayland M; Headley JV; Peru KM; Crosley R; Brownlee BG
    Environ Monit Assess; 2008 Jan; 136(1-3):167-82. PubMed ID: 17380417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isotopic and Chemical Assessment of the Dynamics of Methane Sources and Microbial Cycling during Early Development of an Oil Sands Pit Lake.
    Slater GF; Goad CA; Lindsay MBJ; Mumford KG; Colenbrander Nelson TE; Brady AL; Jessen GL; Warren LA
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946113
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of microbial carbon sources in petroleum contaminated sediments using molecular 14C analysis.
    Slater GF; White HK; Eglinton TI; Reddy CM
    Environ Sci Technol; 2005 Apr; 39(8):2552-8. PubMed ID: 15884348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable nitrogen isotopes of nestling tree swallows indicate exposure to different types of oil sands reclamation.
    Farwell AJ; Harms NJ; Smits JE; Dixon DG
    J Toxicol Environ Health A; 2014; 77(8):415-25. PubMed ID: 24627996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isotopic and microbial evidence for biodegradation of diluted bitumen in the unsaturated zone.
    Mindorff LM; Mahmoudi N; Hepditch SLJ; Langlois VS; Alam S; Martel R; Ahad JME
    Environ Pollut; 2023 Apr; 322():121170. PubMed ID: 36736816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sulfur Biogeochemistry of an Oil Sands Composite Tailings Deposit.
    Warren LA; Kendra KE; Brady AL; Slater GF
    Front Microbiol; 2015; 6():1533. PubMed ID: 26869997
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatial and halophyte-associated microbial communities in intertidal coastal region of India.
    Chaudhary DR; Rathore AP; Kumar R; Jha B
    Int J Phytoremediation; 2017 May; 19(5):478-489. PubMed ID: 27739867
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coarse Woody Debris Increases Microbial Community Functional Diversity but not Enzyme Activities in Reclaimed Oil Sands Soils.
    Kwak JH; Chang SX; Naeth MA; Schaaf W
    PLoS One; 2015; 10(11):e0143857. PubMed ID: 26618605
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Vegetation community composition in wetlands created following oil sand mining in Alberta, Canada.
    Roy MC; Foote L; Ciborowski JJ
    J Environ Manage; 2016 May; 172():18-28. PubMed ID: 26921562
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.