These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
419 related articles for article (PubMed ID: 27987453)
1. Recovery of valuable metals from waste cathode materials of spent lithium-ion batteries using mild phosphoric acid. Chen X; Ma H; Luo C; Zhou T J Hazard Mater; 2017 Mar; 326():77-86. PubMed ID: 27987453 [TBL] [Abstract][Full Text] [Related]
2. A sustainable process for the recovery of valuable metals from spent lithium-ion batteries. Fan B; Chen X; Zhou T; Zhang J; Xu B Waste Manag Res; 2016 May; 34(5):474-81. PubMed ID: 26951340 [TBL] [Abstract][Full Text] [Related]
3. Recovery of valuable metals from mixed types of spent lithium ion batteries. Part II: Selective extraction of lithium. Chen X; Cao L; Kang D; Li J; Zhou T; Ma H Waste Manag; 2018 Oct; 80():198-210. PubMed ID: 30455000 [TBL] [Abstract][Full Text] [Related]
4. Organic reductants based leaching: A sustainable process for the recovery of valuable metals from spent lithium ion batteries. Chen X; Guo C; Ma H; Li J; Zhou T; Cao L; Kang D Waste Manag; 2018 May; 75():459-468. PubMed ID: 29366798 [TBL] [Abstract][Full Text] [Related]
5. Leaching process for recovering valuable metals from the LiNi He LP; Sun SY; Song XF; Yu JG Waste Manag; 2017 Jun; 64():171-181. PubMed ID: 28325707 [TBL] [Abstract][Full Text] [Related]
6. Sustainable recovery of valuable metals from spent lithium-ion batteries using DL-malic acid: Leaching and kinetics aspect. Sun C; Xu L; Chen X; Qiu T; Zhou T Waste Manag Res; 2018 Feb; 36(2):113-120. PubMed ID: 29212425 [TBL] [Abstract][Full Text] [Related]
7. Enhancement in leaching process of lithium and cobalt from spent lithium-ion batteries using benzenesulfonic acid system. Fu Y; He Y; Qu L; Feng Y; Li J; Liu J; Zhang G; Xie W Waste Manag; 2019 Apr; 88():191-199. PubMed ID: 31079631 [TBL] [Abstract][Full Text] [Related]
8. Recovery of valuable metals from LiNi Zhuang L; Sun C; Zhou T; Li H; Dai A Waste Manag; 2019 Feb; 85():175-185. PubMed ID: 30803570 [TBL] [Abstract][Full Text] [Related]
9. Hydrometallurgical process for the recovery of metal values from spent lithium-ion batteries in citric acid media. Chen X; Zhou T Waste Manag Res; 2014 Nov; 32(11):1083-93. PubMed ID: 25378255 [TBL] [Abstract][Full Text] [Related]
10. Novel electrochemically driven and internal circulation process for valuable metals recycling from spent lithium-ion batteries. Li S; Wu X; Jiang Y; Zhou T; Zhao Y; Chen X Waste Manag; 2021 Dec; 136():18-27. PubMed ID: 34634567 [TBL] [Abstract][Full Text] [Related]
11. Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system. Peng C; Hamuyuni J; Wilson BP; Lundström M Waste Manag; 2018 Jun; 76():582-590. PubMed ID: 29510945 [TBL] [Abstract][Full Text] [Related]
12. Glucose oxidase-based biocatalytic acid-leaching process for recovering valuable metals from spent lithium-ion batteries. Fan E; Shi P; Zhang X; Lin J; Wu F; Li L; Chen R Waste Manag; 2020 Aug; 114():166-173. PubMed ID: 32679474 [TBL] [Abstract][Full Text] [Related]
13. Use of glucose as reductant to recover Co from spent lithium ions batteries. Meng Q; Zhang Y; Dong P Waste Manag; 2017 Jun; 64():214-218. PubMed ID: 28325708 [TBL] [Abstract][Full Text] [Related]
14. Spent lithium-ion battery recycling - Reductive ammonia leaching of metals from cathode scrap by sodium sulphite. Zheng X; Gao W; Zhang X; He M; Lin X; Cao H; Zhang Y; Sun Z Waste Manag; 2017 Feb; 60():680-688. PubMed ID: 27993441 [TBL] [Abstract][Full Text] [Related]
15. Hydrometallurgical recovery of metal values from sulfuric acid leaching liquor of spent lithium-ion batteries. Chen X; Chen Y; Zhou T; Liu D; Hu H; Fan S Waste Manag; 2015 Apr; 38():349-56. PubMed ID: 25619126 [TBL] [Abstract][Full Text] [Related]
16. Leaching valuable metals from spent lithium-ion batteries using the reducing agent methanol. Kong L; Wang Z; Shi Z; Hu X; Liu A; Tao W; Wang B; Wang Q Environ Sci Pollut Res Int; 2023 Jan; 30(2):4258-4268. PubMed ID: 35969348 [TBL] [Abstract][Full Text] [Related]
17. Hydrometallurgical recovery of spent cobalt-based lithium-ion battery cathodes using ethanol as the reducing agent. Zhao J; Zhang B; Xie H; Qu J; Qu X; Xing P; Yin H Environ Res; 2020 Feb; 181():108803. PubMed ID: 31761334 [TBL] [Abstract][Full Text] [Related]
18. Countercurrent leaching of Ni, Co, Mn, and Li from spent lithium-ion batteries. Jian Y; Yanqing L; Fangyang L; Ming J; Liangxing J Waste Manag Res; 2020 Dec; 38(12):1358-1366. PubMed ID: 32720588 [TBL] [Abstract][Full Text] [Related]
19. Thermal treatment and ammoniacal leaching for the recovery of valuable metals from spent lithium-ion batteries. Chen Y; Liu N; Hu F; Ye L; Xi Y; Yang S Waste Manag; 2018 May; 75():469-476. PubMed ID: 29478957 [TBL] [Abstract][Full Text] [Related]
20. Vacuum pyrolysis and hydrometallurgical process for the recovery of valuable metals from spent lithium-ion batteries. Sun L; Qiu K J Hazard Mater; 2011 Oct; 194():378-84. PubMed ID: 21872390 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]