BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 27987453)

  • 21. One-step selective separation and efficient recovery of valuable metals from mixed spent lithium batteries in the phosphoric acid system.
    Zhou X; Yang W; Liu X; Tang J; Su F; Li Z; Yang J; Ma Y
    Waste Manag; 2023 Jan; 155():53-64. PubMed ID: 36343600
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Optimization of Synergistic Leaching of Valuable Metals from Spent Lithium-Ion Batteries by the Sulfuric Acid-Malonic Acid System Using Response Surface Methodology.
    Li P; Luo SH; Su F; Zhang L; Yan S; Lei X; Mu W; Wang Q; Zhang Y; Liu X; Hou P
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11359-11374. PubMed ID: 35191662
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-efficiency recovery of valuable metals from spent lithium-ion batteries: Optimization of SO
    Qing J; Wu X; Zeng L; Guan W; Cao Z; Li Q; Wang M; Zhang G; Wu S
    J Environ Manage; 2024 Apr; 356():120729. PubMed ID: 38537464
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication.
    Chen X; Kang D; Li J; Zhou T; Ma H
    J Hazard Mater; 2020 May; 389():121887. PubMed ID: 31843403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Recovery of valuable metals from spent lithium-ion batteries using microbial agents for bioleaching: a review.
    Biswal BK; Balasubramanian R
    Front Microbiol; 2023; 14():1197081. PubMed ID: 37323903
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effective leaching of spent lithium-ion batteries using DL-lactic acid as lixiviant and selective separation of metals through precipitation and solvent extraction.
    Sahu S; Devi N
    Environ Sci Pollut Res Int; 2023 Aug; 30(39):90152-90167. PubMed ID: 36520282
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Novel approach to recover cobalt and lithium from spent lithium-ion battery using oxalic acid.
    Zeng X; Li J; Shen B
    J Hazard Mater; 2015 Sep; 295():112-8. PubMed ID: 25897692
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant.
    Li L; Ge J; Wu F; Chen R; Chen S; Wu B
    J Hazard Mater; 2010 Apr; 176(1-3):288-93. PubMed ID: 19954882
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recycling of cathode material from spent lithium ion batteries using an ultrasound-assisted DL-malic acid leaching system.
    Ning P; Meng Q; Dong P; Duan J; Xu M; Lin Y; Zhang Y
    Waste Manag; 2020 Feb; 103():52-60. PubMed ID: 31865035
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Rapid leaching and recovery of valuable metals from spent Lithium Ion batteries (LIBs) via environmentally benign subcritical nickel-containing water over chlorinated polyvinyl chloride.
    Nshizirungu T; Rana M; Jo YT; Park JH
    J Hazard Mater; 2020 Sep; 396():122667. PubMed ID: 32361298
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A process of leaching recovery for cobalt and lithium from spent lithium-ion batteries by citric acid and salicylic acid.
    Xu M; Kang S; Jiang F; Yan X; Zhu Z; Zhao Q; Teng Y; Wang Y
    RSC Adv; 2021 Aug; 11(44):27689-27700. PubMed ID: 35480651
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Subcritical Water Extraction of Valuable Metals from Spent Lithium-Ion Batteries.
    Lie J; Tanda S; Liu JC
    Molecules; 2020 May; 25(9):. PubMed ID: 32384592
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultrasound-assisted leaching of cobalt and lithium from spent lithium-ion batteries.
    Jiang F; Chen Y; Ju S; Zhu Q; Zhang L; Peng J; Wang X; Miller JD
    Ultrason Sonochem; 2018 Nov; 48():88-95. PubMed ID: 30080590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries.
    Li L; Ge J; Chen R; Wu F; Chen S; Zhang X
    Waste Manag; 2010 Dec; 30(12):2615-21. PubMed ID: 20817431
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hydrometallurgical recycling of lithium-ion batteries by reductive leaching with sodium metabisulphite.
    Vieceli N; Nogueira CA; GuimarĂ£es C; Pereira MFC; DurĂ£o FO; Margarido F
    Waste Manag; 2018 Jan; 71():350-361. PubMed ID: 29030120
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Leaching NCM cathode materials of spent lithium-ion batteries with phosphate acid-based deep eutectic solvent.
    He X; Wen Y; Wang X; Cui Y; Li L; Ma H
    Waste Manag; 2023 Feb; 157():8-16. PubMed ID: 36512926
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Improved recovery of valuable metals from spent lithium-ion batteries by efficient reduction roasting and facile acid leaching.
    Zhang Y; Wang W; Fang Q; Xu S
    Waste Manag; 2020 Feb; 102():847-855. PubMed ID: 31835062
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Process for recycling mixed-cathode materials from spent lithium-ion batteries and kinetics of leaching.
    Li L; Bian Y; Zhang X; Guan Y; Fan E; Wu F; Chen R
    Waste Manag; 2018 Jan; 71():362-371. PubMed ID: 29110940
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.