These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 27987453)

  • 41. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Reduction-ammoniacal leaching to recycle lithium, cobalt, and nickel from spent lithium-ion batteries with a hydrothermal method: Effect of reductants and ammonium salts.
    Wang S; Wang C; Lai F; Yan F; Zhang Z
    Waste Manag; 2020 Feb; 102():122-130. PubMed ID: 31671359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Recycling of valuable metals from spent lithium-ion batteries by self-supplied reductant roasting.
    Wei N; He Y; Zhang G; Feng Y; Li J; Lu Q; Fu Y
    J Environ Manage; 2023 Mar; 329():117107. PubMed ID: 36566732
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Recovery of valuable metals from cathodic active material of spent lithium ion batteries: Leaching and kinetic aspects.
    Meshram P; Pandey BD; Mankhand TR
    Waste Manag; 2015 Nov; 45():306-13. PubMed ID: 26087645
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Chlorinated polyvinyl chloride (CPVC) assisted leaching of lithium and cobalt from spent lithium-ion battery in subcritical water.
    Nshizirungu T; Agarwal A; Jo YT; Rana M; Shin D; Park JH
    J Hazard Mater; 2020 Jul; 393():122367. PubMed ID: 32114140
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Acid-free extraction of valuable metal elements from spent lithium-ion batteries using waste copperas.
    Jin X; Zhang P; Teng L; Rohani S; He M; Meng F; Liu Q; Liu W
    Waste Manag; 2023 Jun; 165():189-198. PubMed ID: 37149393
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Recycling of spent lithium-ion battery with polyvinyl chloride by mechanochemical process.
    Wang MM; Zhang CC; Zhang FS
    Waste Manag; 2017 Sep; 67():232-239. PubMed ID: 28502601
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Innovative leaching of cobalt and lithium from spent lithium-ion batteries and simultaneous dechlorination of polyvinyl chloride in subcritical water.
    Liu K; Zhang FS
    J Hazard Mater; 2016 Oct; 316():19-25. PubMed ID: 27209515
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Leaching of valuable metals from cathode active materials in spent lithium-ion batteries by levulinic acid and biological approaches.
    Jiang T; Shi Q; Wei Z; Shah K; Efstathiadis H; Meng X; Liang Y
    Heliyon; 2023 May; 9(5):e15788. PubMed ID: 37180931
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Stepwise recycling of valuable metals from Ni-rich cathode material of spent lithium-ion batteries.
    Yang Y; Lei S; Song S; Sun W; Wang L
    Waste Manag; 2020 Feb; 102():131-138. PubMed ID: 31677520
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Reaction mechanism of antibiotic bacteria residues as a green reductant for highly efficient recycling of spent lithium-ion batteries.
    Ma Y; Zhou X; Tang J; Liu X; Gan H; Yang J
    J Hazard Mater; 2021 Sep; 417():126032. PubMed ID: 33992020
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A sustainable process for metal recycling from spent lithium-ion batteries using ammonium chloride.
    Lv W; Wang Z; Cao H; Zheng X; Jin W; Zhang Y; Sun Z
    Waste Manag; 2018 Sep; 79():545-553. PubMed ID: 30343786
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Recycling of spent lithium-ion batteries: Selective ammonia leaching of valuable metals and simultaneous synthesis of high-purity manganese carbonate.
    Wang C; Wang S; Yan F; Zhang Z; Shen X; Zhang Z
    Waste Manag; 2020 Aug; 114():253-262. PubMed ID: 32682090
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Organic oxalate as leachant and precipitant for the recovery of valuable metals from spent lithium-ion batteries.
    Sun L; Qiu K
    Waste Manag; 2012 Aug; 32(8):1575-82. PubMed ID: 22534072
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Recycling of LiCoO
    Zhou S; Zhang Y; Meng Q; Dong P; Fei Z; Li Q
    J Environ Manage; 2021 Jan; 277():111426. PubMed ID: 33032002
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A closed-loop process to recover Li and Co compounds and to resynthesize LiCoO
    Dos Santos CS; Alves JC; da Silva SP; Evangelista Sita L; da Silva PRC; de Almeida LC; Scarminio J
    J Hazard Mater; 2019 Jan; 362():458-466. PubMed ID: 30265977
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Coupling regeneration strategy of lithium-ion electrode materials turned with naphthalenedisulfonic acid.
    Qiu X; Tian Y; Deng W; Li F; Hu J; Deng W; Chen J; Zou G; Hou H; Yang Y; Sun W; Hu Y; Ji X
    Waste Manag; 2021 Dec; 136():1-10. PubMed ID: 34627101
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Maleic, glycolic and acetoacetic acids-leaching for recovery of valuable metals from spent lithium-ion batteries: leaching parameters, thermodynamics and kinetics.
    Liu B; Huang Q; Su Y; Sun L; Wu T; Wang G; Kelly RM; Wu F
    R Soc Open Sci; 2019 Sep; 6(9):191061. PubMed ID: 31598322
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.