These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
671 related articles for article (PubMed ID: 27987682)
21. Preparation and mechanical property of a novel 3D porous magnesium scaffold for bone tissue engineering. Zhang X; Li XW; Li JG; Sun XD Mater Sci Eng C Mater Biol Appl; 2014 Sep; 42():362-7. PubMed ID: 25063129 [TBL] [Abstract][Full Text] [Related]
22. Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects. Bonithon R; Kao AP; Fernández MP; Dunlop JN; Blunn GW; Witte F; Tozzi G Acta Biomater; 2021 Jun; 127():338-352. PubMed ID: 33831571 [TBL] [Abstract][Full Text] [Related]
23. In vitro and in vivo evaluation of MgF Yu W; Zhao H; Ding Z; Zhang Z; Sun B; Shen J; Chen S; Zhang B; Yang K; Liu M; Chen D; He Y Colloids Surf B Biointerfaces; 2017 Jan; 149():330-340. PubMed ID: 27792982 [TBL] [Abstract][Full Text] [Related]
24. Additively manufactured iron-manganese for biodegradable porous load-bearing bone scaffold applications. Carluccio D; Xu C; Venezuela J; Cao Y; Kent D; Bermingham M; Demir AG; Previtali B; Ye Q; Dargusch M Acta Biomater; 2020 Feb; 103():346-360. PubMed ID: 31862424 [TBL] [Abstract][Full Text] [Related]
25. Synthesis, microstructure and mechanical properties of porous Mg--Zn scaffolds. Seyedraoufi ZS; Mirdamadi Sh J Mech Behav Biomed Mater; 2013 May; 21():1-8. PubMed ID: 23454363 [TBL] [Abstract][Full Text] [Related]
26. Bone tissue engineering: Scaffold preparation using chitosan and other biomaterials with different design and fabrication techniques. Preethi Soundarya S; Haritha Menon A; Viji Chandran S; Selvamurugan N Int J Biol Macromol; 2018 Nov; 119():1228-1239. PubMed ID: 30107161 [TBL] [Abstract][Full Text] [Related]
27. Wear mechanism and tribological characteristics of porous NiTi shape memory alloy for bone scaffold. Wu S; Liu X; Wu G; Yeung KW; Zheng D; Chung CY; Xu ZS; Chu PK J Biomed Mater Res A; 2013 Sep; 101(9):2586-601. PubMed ID: 23401387 [TBL] [Abstract][Full Text] [Related]
28. Bio-mechanical analysis of porous Ti-6Al-4V scaffold: a comprehensive review on unit cell structures in orthopaedic application. Deshmukh S; Chand A; Ghorpade R Biomed Phys Eng Express; 2024 Oct; 10(6):. PubMed ID: 39353464 [TBL] [Abstract][Full Text] [Related]
29. A systematic review of preclinical in vivo testing of 3D printed porous Ti6Al4V for orthopedic applications, part I: Animal models and bone ingrowth outcome measures. Spece H; Basgul C; Andrews CE; MacDonald DW; Taheri ML; Kurtz SM J Biomed Mater Res B Appl Biomater; 2021 Oct; 109(10):1436-1454. PubMed ID: 33484102 [TBL] [Abstract][Full Text] [Related]
30. Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution. Putra NE; Mirzaali MJ; Apachitei I; Zhou J; Zadpoor AA Acta Biomater; 2020 Jun; 109():1-20. PubMed ID: 32268239 [TBL] [Abstract][Full Text] [Related]
31. Highly porous titanium scaffolds for orthopaedic applications. Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174 [TBL] [Abstract][Full Text] [Related]
32. Fabrication of porous-Ti6Al4V alloy by using hot pressing technique and Mg space holder for hard-tissue biomedical applications. Aslan N; Aksakal B; Findik F J Mater Sci Mater Med; 2021 Jun; 32(7):80. PubMed ID: 34191138 [TBL] [Abstract][Full Text] [Related]
33. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
34. Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering. Wu C; Zhou Y; Fan W; Han P; Chang J; Yuen J; Zhang M; Xiao Y Biomaterials; 2012 Mar; 33(7):2076-85. PubMed ID: 22177618 [TBL] [Abstract][Full Text] [Related]
35. Bone ingrowth in porous titanium implants produced by 3D fiber deposition. Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852 [TBL] [Abstract][Full Text] [Related]
36. Surface modifications of magnesium alloys for biomedical applications. Yang J; Cui F; Lee IS Ann Biomed Eng; 2011 Jul; 39(7):1857-71. PubMed ID: 21445692 [TBL] [Abstract][Full Text] [Related]
37. Structural and vascular analysis of tissue engineering scaffolds, Part 2: Topology optimisation. Almeida HA; Bártolo PJ Methods Mol Biol; 2012; 868():209-36. PubMed ID: 22692613 [TBL] [Abstract][Full Text] [Related]
38. Magnesium and its alloys as orthopedic biomaterials: a review. Staiger MP; Pietak AM; Huadmai J; Dias G Biomaterials; 2006 Mar; 27(9):1728-34. PubMed ID: 16246414 [TBL] [Abstract][Full Text] [Related]
39. Biomaterials and scaffolds in bone and musculoskeletal engineering. Kosuge D; Khan WS; Haddad B; Marsh D Curr Stem Cell Res Ther; 2013 May; 8(3):185-91. PubMed ID: 23317466 [TBL] [Abstract][Full Text] [Related]
40. Magnesium-zinc scaffold loaded with tetracycline for tissue engineering application: In vitro cell biology and antibacterial activity assessment. Dayaghi E; Bakhsheshi-Rad HR; Hamzah E; Akhavan-Farid A; Ismail AF; Aziz M; Abdolahi E Mater Sci Eng C Mater Biol Appl; 2019 Sep; 102():53-65. PubMed ID: 31147024 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]