These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 27987728)

  • 1. Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications.
    Sadeghzade S; Emadi R; Tavangarian F; Naderi M
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():431-438. PubMed ID: 27987728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biocompatibility and bioactivity of hardystonite-based nanocomposite scaffold for tissue engineering applications.
    Hamvar M; Bakhsheshi-Rad HR; Omidi M; Ismail AF; Aziz M; Berto F; Chen X
    Biomed Phys Eng Express; 2020 Mar; 6(3):035011. PubMed ID: 33438656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Porous diopside (CaMgSi(2)O(6)) scaffold: A promising bioactive material for bone tissue engineering.
    Wu C; Ramaswamy Y; Zreiqat H
    Acta Biomater; 2010 Jun; 6(6):2237-45. PubMed ID: 20018260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration.
    Ghorbanian L; Emadi R; Razavi SM; Shin H; Teimouri A
    Int J Biol Macromol; 2013 Jul; 58():275-80. PubMed ID: 23603246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of polycaporolacton fumarate coating on mechanical properties and in vitro behavior of porous diopside-hardystonite nano-composite scaffold.
    Sadeghzade S; Emadi R; Tavangarian F; Doostmohammadi A
    J Mech Behav Biomed Mater; 2020 Jan; 101():103445. PubMed ID: 31569038
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparing diopside nanoparticle scaffolds via space holder method: Simulation of the compressive strength and porosity.
    Abdellahi M; Najafinezhad A; Ghayour H; Saber-Samandari S; Khandan A
    J Mech Behav Biomed Mater; 2017 Aug; 72():171-181. PubMed ID: 28499165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method of fabricating robust freeform 3D ceramic scaffolds for bone tissue regeneration.
    Seol YJ; Park DY; Park JY; Kim SW; Park SJ; Cho DW
    Biotechnol Bioeng; 2013 May; 110(5):1444-55. PubMed ID: 23192318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering.
    Rezwan K; Chen QZ; Blaker JJ; Boccaccini AR
    Biomaterials; 2006 Jun; 27(18):3413-31. PubMed ID: 16504284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporation of sol-gel bioactive glass into PLGA improves mechanical properties and bioactivity of composite scaffolds and results in their osteoinductive properties.
    Filipowska J; Pawlik J; Cholewa-Kowalska K; Tylko G; Pamula E; Niedzwiedzki L; Szuta M; Laczka M; Osyczka AM
    Biomed Mater; 2014 Oct; 9(6):065001. PubMed ID: 25329328
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of surface modification on the mechanical and structural properties of nanofibrous poly(ε-caprolactone)/forsterite scaffold for tissue engineering applications.
    Kharaziha M; Fathi MH; Edris H
    Mater Sci Eng C Mater Biol Appl; 2013 Dec; 33(8):4512-9. PubMed ID: 24094153
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method.
    Sadeghzade S; Shamoradi F; Emadi R; Tavangarian F
    J Mech Behav Biomed Mater; 2017 Apr; 68():1-7. PubMed ID: 28135637
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An overview of chitin or chitosan/nano ceramic composite scaffolds for bone tissue engineering.
    Deepthi S; Venkatesan J; Kim SK; Bumgardner JD; Jayakumar R
    Int J Biol Macromol; 2016 Dec; 93(Pt B):1338-1353. PubMed ID: 27012892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biocompatibility, degradability, bioactivity and osteogenesis of mesoporous/macroporous scaffolds of mesoporous diopside/poly(L-lactide) composite.
    Liu Z; Ji J; Tang S; Qian J; Yan Y; Yu B; Su J; Wei J
    J R Soc Interface; 2015 Oct; 12(111):20150507. PubMed ID: 26378120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study of the mechanical stability and bioactivity of Bioglass(®) based glass-ceramic scaffolds produced via powder metallurgy-inspired technology.
    Boccardi E; Melli V; Catignoli G; Altomare L; Jahromi MT; Cerruti M; Lefebvre LP; De Nardo L
    Biomed Mater; 2016 Feb; 11(1):015005. PubMed ID: 26836444
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The in vitro and in vivo cementogenesis of CaMgSi₂O₆ bioceramic scaffolds.
    Zhang Y; Li S; Wu C
    J Biomed Mater Res A; 2014 Jan; 102(1):105-16. PubMed ID: 23596060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanical reinforcement of diopside bone scaffolds with carbon nanotubes.
    Shuai C; Liu T; Gao C; Feng P; Peng S
    Int J Mol Sci; 2014 Oct; 15(10):19319-29. PubMed ID: 25342324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the synthesis of nanostructured akermanite scaffolds via space holder method: The effect of the spacer size on the porosity and mechanical properties.
    Najafinezhad A; Abdellahi M; Nasiri-Harchegani S; Soheily A; Khezri M; Ghayour H
    J Mech Behav Biomed Mater; 2017 May; 69():242-248. PubMed ID: 28107739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of a biomimetic composite scaffold from gelatin/collagen and bioactive glass fibers for bone tissue engineering.
    Sharifi E; Azami M; Kajbafzadeh AM; Moztarzadeh F; Faridi-Majidi R; Shamousi A; Karimi R; Ai J
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():533-541. PubMed ID: 26652405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel design of low modulus high strength zirconia scaffolds for biomedical applications.
    Marques A; Miranda G; Faria D; Pinto P; Silva F; Carvalho Ó
    J Mech Behav Biomed Mater; 2019 Sep; 97():375-384. PubMed ID: 31170671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fracture behaviors of ceramic tissue scaffolds for load bearing applications.
    Entezari A; Roohani-Esfahani SI; Zhang Z; Zreiqat H; Dunstan CR; Li Q
    Sci Rep; 2016 Jul; 6():28816. PubMed ID: 27403936
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.