These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
350 related articles for article (PubMed ID: 27987749)
41. Near-Infrared Light and pH-Responsive Polypyrrole@Polyacrylic acid/Fluorescent Mesoporous Silica Nanoparticles for Imaging and Chemo-Photothermal Cancer Therapy. Zhang M; Wang T; Zhang L; Li L; Wang C Chemistry; 2015 Nov; 21(45):16162-71. PubMed ID: 26494031 [TBL] [Abstract][Full Text] [Related]
42. BSA-based Cu Liu Z; Chan L; Ye X; Bai Y; Chen T Colloids Surf B Biointerfaces; 2018 Dec; 172():298-307. PubMed ID: 30173097 [TBL] [Abstract][Full Text] [Related]
43. Spindle-like polypyrrole hollow nanocapsules as multifunctional platforms for highly effective chemo-photothermal combination therapy of cancer cells in vivo. Wang Y; Xiao Y; Tang R Chemistry; 2014 Sep; 20(37):11826-34. PubMed ID: 25077695 [TBL] [Abstract][Full Text] [Related]
44. pH-responsive drug delivery system based on luminescent CaF(2):Ce(3+)/Tb(3+)-poly(acrylic acid) hybrid microspheres. Dai Y; Zhang C; Cheng Z; Ma P; Li C; Kang X; Yang D; Lin J Biomaterials; 2012 Mar; 33(8):2583-92. PubMed ID: 22196902 [TBL] [Abstract][Full Text] [Related]
45. Multifunctional Mesoporous Silica Nanoparticles with Thermal-Responsive Gatekeeper for NIR Light-Triggered Chemo/Photothermal-Therapy. Lei Q; Qiu WX; Hu JJ; Cao PX; Zhu CH; Cheng H; Zhang XZ Small; 2016 Aug; 12(31):4286-98. PubMed ID: 27376247 [TBL] [Abstract][Full Text] [Related]
46. Target-specific near-IR induced drug release and photothermal therapy with accumulated Au/Ag hollow nanoshells on pulmonary cancer cell membranes. Noh MS; Lee S; Kang H; Yang JK; Lee H; Hwang D; Lee JW; Jeong S; Jang Y; Jun BH; Jeong DH; Kim SK; Lee YS; Cho MH Biomaterials; 2015 Mar; 45():81-92. PubMed ID: 25662498 [TBL] [Abstract][Full Text] [Related]
47. NIR Light-Degradable Antimony Nanoparticle-Based Drug-Delivery Nanosystem for Synergistic Chemo-Photothermal Therapy in Vitro. Dibaba ST; Caputo R; Xi W; Zhang JZ; Wei R; Zhang Q; Zhang J; Ren W; Sun L ACS Appl Mater Interfaces; 2019 Dec; 11(51):48290-48299. PubMed ID: 31802657 [TBL] [Abstract][Full Text] [Related]
48. Preparation of pH-responsive mesoporous hydroxyapatite nanoparticles for intracellular controlled release of an anticancer drug. Li D; Huang X; Wu Y; Li J; Cheng W; He J; Tian H; Huang Y Biomater Sci; 2016 Feb; 4(2):272-80. PubMed ID: 26484364 [TBL] [Abstract][Full Text] [Related]
49. Reduction-responsive drug delivery based on mesoporous silica nanoparticle core with crosslinked poly(acrylic acid) shell. Li H; Zhang JZ; Tang Q; Du M; Hu J; Yang D Mater Sci Eng C Mater Biol Appl; 2013 Aug; 33(6):3426-31. PubMed ID: 23706230 [TBL] [Abstract][Full Text] [Related]
50. Polyacrylic Acid Functionalized Co Ma Y; Wang X; Chen H; Miao Z; He G; Zhou J; Zha Z ACS Biomater Sci Eng; 2018 Feb; 4(2):547-557. PubMed ID: 33418744 [TBL] [Abstract][Full Text] [Related]
51. Doxorubicin/Cisplatin-Loaded Superparamagnetic Nanoparticles As A Stimuli-Responsive Co-Delivery System For Chemo-Photothermal Therapy. Khafaji M; Zamani M; Vossoughi M; Iraji Zad A Int J Nanomedicine; 2019; 14():8769-8786. PubMed ID: 31806971 [TBL] [Abstract][Full Text] [Related]
52. InSe Nanosheets for Efficient NIR-II-Responsive Drug Release. Huang C; Sun Z; Cui H; Pan T; Geng S; Zhou W; Chu PK; Yu XF ACS Appl Mater Interfaces; 2019 Aug; 11(31):27521-27528. PubMed ID: 31180631 [TBL] [Abstract][Full Text] [Related]
53. Hollow chitosan/poly(acrylic acid) nanospheres as drug carriers. Hu Y; Ding Y; Ding D; Sun M; Zhang L; Jiang X; Yang C Biomacromolecules; 2007 Apr; 8(4):1069-76. PubMed ID: 17326676 [TBL] [Abstract][Full Text] [Related]
54. An innovative MWCNTs/DOX/TC nanosystem for chemo-photothermal combination therapy of cancer. Dong X; Sun Z; Wang X; Leng X Nanomedicine; 2017 Oct; 13(7):2271-2280. PubMed ID: 28712919 [TBL] [Abstract][Full Text] [Related]
55. Synthesis of core-shell graphitic carbon@silica nanospheres with dual-ordered mesopores for cancer-targeted photothermochemotherapy. Wang Y; Wang K; Zhang R; Liu X; Yan X; Wang J; Wagner E; Huang R ACS Nano; 2014 Aug; 8(8):7870-9. PubMed ID: 25046179 [TBL] [Abstract][Full Text] [Related]
56. Albumin-bioinspired iridium oxide nanoplatform with high photothermal conversion efficiency for synergistic chemo-photothermal of osteosarcoma. Gu W; Zhang T; Gao J; Wang Y; Li D; Zhao Z; Jiang B; Dong Z; Liu H Drug Deliv; 2019 Dec; 26(1):918-927. PubMed ID: 31526064 [TBL] [Abstract][Full Text] [Related]
57. Customized multi-stimuli nanovehicles with dissociable 'bomblets' for photothermal-enhanced synergetic tumor therapy. Lin J; Li G; Jiang K; Xu T; Liu C; Wang L; Zhang X; Cai D; Wu C; Meng X; Zhu W Colloids Surf B Biointerfaces; 2023 Feb; 222():113083. PubMed ID: 36542948 [TBL] [Abstract][Full Text] [Related]
58. Synergistic effect of chemo-photothermal for breast cancer therapy using folic acid (FA) modified zinc oxide nanosheet. Vimala K; Shanthi K; Sundarraj S; Kannan S J Colloid Interface Sci; 2017 Feb; 488():92-108. PubMed ID: 27821343 [TBL] [Abstract][Full Text] [Related]
59. A nanoscale photothermal agent based on a metal-organic coordination polymer as a drug-loading framework for effective combination therapy. Li J; Zhang C; Gong S; Li X; Yu M; Qian C; Qiao H; Sun M Acta Biomater; 2019 Aug; 94():435-446. PubMed ID: 31216493 [TBL] [Abstract][Full Text] [Related]
60. An RGD-modified hollow silica@Au core/shell nanoplatform for tumor combination therapy. Li X; Xing L; Hu Y; Xiong Z; Wang R; Xu X; Du L; Shen M; Shi X Acta Biomater; 2017 Oct; 62():273-283. PubMed ID: 28823719 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]