BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 27987921)

  • 1. Production of xylooligosaccharides by microwave-induced, organic acid-catalyzed hydrolysis of different xylan-type hemicelluloses: Optimization by response surface methodology.
    Lin Q; Li H; Ren J; Deng A; Li W; Liu C; Sun R
    Carbohydr Polym; 2017 Feb; 157():214-225. PubMed ID: 27987921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses.
    Bian J; Peng P; Peng F; Xiao X; Xu F; Sun RC
    Food Chem; 2014 Aug; 156():7-13. PubMed ID: 24629931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of prebiotic xylooligosaccharides from industrial-derived xylan residue by organic acid treatment.
    Yan B; Huang C; Lai C; Ling Z; Yong Q
    Carbohydr Polym; 2022 Sep; 292():119641. PubMed ID: 35725201
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synergistic microwave and acidic deep eutectic solvent-based pretreatment of Theobroma cacao pod husk biomass for xylooligosaccharides production.
    Yadav A; Sharma V; Tsai ML; Sharma D; Nargotra P; Chen CW; Sun PP; Dong CD
    Bioresour Technol; 2024 May; 400():130702. PubMed ID: 38615968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Production of Prebiotic Xylooligosaccharides via Dilute Maleic Acid-Mediated Xylan Hydrolysis Using an RSM-Model-Based Optimization Strategy.
    Jiang K; Fu X; Huang R; Fan X; Ji L; Cai D; Liu X; Fu Y; Sun A; Feng C
    Front Nutr; 2022; 9():909283. PubMed ID: 35619949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective Production of Xylooligosaccharides by Xylan Hydrolysis Using a Novel Recyclable and Separable Furoic Acid.
    Zhao J; Zhang X; Zhou X; Xu Y
    Front Bioeng Biotechnol; 2021; 9():660266. PubMed ID: 33898408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of xylooligosaccharide production from residual hemicelluloses of dissolving pulp by acid and enzymatic hydrolysis.
    Wang Y; Cao X; Zhang R; Xiao L; Yuan T; Shi Q; Sun R
    RSC Adv; 2018 Oct; 8(61):35211-35217. PubMed ID: 35547053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemometric optimisation of enzymatic hydrolysis of beechwood xylan to target desired xylooligosaccharides.
    Díaz-Arenas GL; Lebanov L; Sanz Rodríguez E; Sadiq MM; Paull B; Garnier G; Tanner J
    Bioresour Technol; 2022 May; 352():127041. PubMed ID: 35318144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Production of High Commercial Value Xylooligosaccharides from Meranti Wood Sawdust Using Immobilised Xylanase.
    Sukri SSM; Mimi Sakinah AM
    Appl Biochem Biotechnol; 2018 Jan; 184(1):278-290. PubMed ID: 28676961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimized production of xylooligosaccharides from poplar: A biorefinery strategy with sequential acetic acid/sodium acetate hydrolysis followed by xylanase hydrolysis.
    Liao H; Ying W; Li X; Zhu J; Xu Y; Zhang J
    Bioresour Technol; 2022 Mar; 347():126683. PubMed ID: 34999193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of xylooligosaccharides by controlled acid hydrolysis of lignocellulosic materials.
    Akpinar O; Erdogan K; Bostanci S
    Carbohydr Res; 2009 Mar; 344(5):660-6. PubMed ID: 19211099
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing tri-acid mixture hydrolysis: An improved strategy for efficient xylooligosaccharides production from corncob.
    Liao H; Xu Y; Sun FF; Zhang J
    Bioresour Technol; 2023 Feb; 369():128500. PubMed ID: 36535614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biorefinery Cascade Processing for Converting Corncob to Xylooligosaccharides and Glucose by Maleic Acid Pretreatment.
    Lian Z; Zhang Q; Xu Y; Zhou X; Jiang K
    Appl Biochem Biotechnol; 2022 Oct; 194(10):4946-4958. PubMed ID: 35674923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Two-step acetic acid/sodium acetate and xylanase hydrolysis for xylooligosaccharides production from corncob.
    Liao H; Li X; Lian Z; Xu Y; Zhang J
    Bioresour Technol; 2021 Dec; 342():125979. PubMed ID: 34571332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co-production of functional xylooligosaccharides and fermentable sugars from corncob with effective acetic acid prehydrolysis.
    Zhang H; Xu Y; Yu S
    Bioresour Technol; 2017 Jun; 234():343-349. PubMed ID: 28340439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production and optimization of xylooligosaccharides from corncob by Bacillus aerophilus KGJ2 xylanase and its antioxidant potential.
    Gowdhaman D; Ponnusami V
    Int J Biol Macromol; 2015 Aug; 79():595-600. PubMed ID: 26038103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis.
    Ying W; Ouyang J; Lian Z; Xu Y; Zhang J
    Bioresour Technol; 2022 Jun; 354():127190. PubMed ID: 35452823
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated process to produce prebiotic xylooligosaccharides by autohydrolysis, nanofiltration and endo-xylanase from alkali-extracted xylan.
    Lian Z; Wang Y; Luo J; Lai C; Yong Q; Yu S
    Bioresour Technol; 2020 Oct; 314():123685. PubMed ID: 32593784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of pigeon pea (Cajanus cajan) stalks as raw material for xylooligosaccharides production.
    Samanta AK; Jayapal N; Kolte AP; Senani S; Sridhar M; Mishra S; Prasad CS; Suresh KP
    Appl Biochem Biotechnol; 2013 Apr; 169(8):2392-404. PubMed ID: 23456278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microwave-assisted enzymatic hydrolysis to produce xylooligosaccharides from rice husk alkali-soluble arabinoxylan.
    Klangpetch W; Pattarapisitporn A; Phongthai S; Utama-Ang N; Laokuldilok T; Tangjaidee P; Wirjantoro TI; Jaichakan P
    Sci Rep; 2022 Jan; 12(1):11. PubMed ID: 34996923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.