These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 27987930)
1. Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Kamal T; Ahmad I; Khan SB; Asiri AM Carbohydr Polym; 2017 Feb; 157():294-302. PubMed ID: 27987930 [TBL] [Abstract][Full Text] [Related]
2. Functional cellulose-based nanofibers with catalytic activity: effect of Ag content and Ag phase. Jang KH; Kang YO; Park WH Int J Biol Macromol; 2014 Jun; 67():394-400. PubMed ID: 24705168 [TBL] [Abstract][Full Text] [Related]
3. Preparation and properties of cellulose/silver nanocomposite fibers. Li R; He M; Li T; Zhang L Carbohydr Polym; 2015 Jan; 115():269-75. PubMed ID: 25439895 [TBL] [Abstract][Full Text] [Related]
4. Performance of cellulose acetate-ferric oxide nanocomposite supported metal catalysts toward the reduction of environmental pollutants. Bakhsh EM; Khan SA; Marwani HM; Danish EY; Asiri AM; Khan SB Int J Biol Macromol; 2018 Feb; 107(Pt A):668-677. PubMed ID: 28919532 [TBL] [Abstract][Full Text] [Related]
5. A facile synthesis of CuAg nanoparticles on highly porous ZnO/carbon black-cellulose acetate sheets for nitroarene and azo dyes reduction/degradation. Khan SA; Khan SB; Farooq A; Asiri AM Int J Biol Macromol; 2019 Jun; 130():288-299. PubMed ID: 30797005 [TBL] [Abstract][Full Text] [Related]
6. Novel combination of zero-valent Cu and Ag nanoparticles @ cellulose acetate nanocomposite for the reduction of 4-nitro phenol. Khan FU; Asimullah ; Khan SB; Kamal T; Asiri AM; Khan IU; Akhtar K Int J Biol Macromol; 2017 Sep; 102():868-877. PubMed ID: 28428128 [TBL] [Abstract][Full Text] [Related]
7. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications. Cao J; Sun X; Zhang X; Lu C Int J Biol Macromol; 2016 Nov; 92():167-173. PubMed ID: 27373429 [TBL] [Abstract][Full Text] [Related]
8. Noble metal/functionalized cellulose nanofiber composites for catalytic applications. Gopiraman M; Bang H; Yuan G; Yin C; Song KH; Lee JS; Chung IM; Karvembu R; Kim IS Carbohydr Polym; 2015 Nov; 132():554-64. PubMed ID: 26256382 [TBL] [Abstract][Full Text] [Related]
9. Cellulose nanocrystal/hexadecyltrimethylammonium bromide/silver nanoparticle composite as a catalyst for reduction of 4-nitrophenol. An X; Long Y; Ni Y Carbohydr Polym; 2017 Jan; 156():253-258. PubMed ID: 27842820 [TBL] [Abstract][Full Text] [Related]
10. Cellulose nanocomposite films with in situ generated silver nanoparticles using Cassia alata leaf extract as a reducing agent. Sivaranjana P; Nagarajan ER; Rajini N; Jawaid M; Rajulu AV Int J Biol Macromol; 2017 Jun; 99():223-232. PubMed ID: 28237574 [TBL] [Abstract][Full Text] [Related]
11. Synthesis of worm like silver nanoparticles in methyl cellulose polymeric matrix and its catalytic activity. Bhui DK; Misra A Carbohydr Polym; 2012 Jul; 89(3):830-5. PubMed ID: 24750868 [TBL] [Abstract][Full Text] [Related]
12. One-Pot Synthesis of Biocompatible Silver Nanoparticle Composites from Cellulose and Keratin: Characterization and Antimicrobial Activity. Tran CD; Prosenc F; Franko M; Benzi G ACS Appl Mater Interfaces; 2016 Dec; 8(50):34791-34801. PubMed ID: 27998108 [TBL] [Abstract][Full Text] [Related]
13. Viscoelastic properties and antimicrobial activity of cellulose fiber sheets impregnated with Ag nanoparticles. Csóka L; Božanić DK; Nagy V; Dimitrijević-Branković S; Luyt AS; Grozdits G; Djoković V Carbohydr Polym; 2012 Oct; 90(2):1139-46. PubMed ID: 22840051 [TBL] [Abstract][Full Text] [Related]
14. Facile fabrication of silver nanoparticles deposited cellulose microfiber nanocomposites for catalytic application. Xu P; Cen C; Chen N; Lin H; Wang Q; Xu N; Tang J; Teng Z J Colloid Interface Sci; 2018 Sep; 526():194-200. PubMed ID: 29729970 [TBL] [Abstract][Full Text] [Related]
15. Silver nanoparticles-decorated polyphosphazene nanotubes: synthesis and applications. Wang M; Fu J; Huang D; Zhang C; Xu Q Nanoscale; 2013 Sep; 5(17):7913-9. PubMed ID: 23852037 [TBL] [Abstract][Full Text] [Related]
16. Metal nanoparticles decorated mint-cellulose acetate composite as an efficient catalyst for the reduction of methyl orange. Homdi TA; Fagieh TM; Akhtar K; Bakhsh EM; Alhemadan AH; Khan SB Int J Biol Macromol; 2024 May; 268(Pt 1):131558. PubMed ID: 38614166 [TBL] [Abstract][Full Text] [Related]
17. Thin layer chitosan-coated cellulose filter paper as substrate for immobilization of catalytic cobalt nanoparticles. Kamal T; Khan SB; Haider S; Alghamdi YG; Asiri AM Int J Biol Macromol; 2017 Nov; 104(Pt A):56-62. PubMed ID: 28571736 [TBL] [Abstract][Full Text] [Related]
18. Ag Nanoparticles Stabilized on Cyclodextrin Polymer Decorated with Multi-Nitrogen Atom Containing Polymer: An Efficient Catalyst for the Synthesis of Xanthenes. Sadjadi S; Ghoreyshi Kahangi F; Dorraj M; Heravi MM Molecules; 2020 Jan; 25(2):. PubMed ID: 31936059 [TBL] [Abstract][Full Text] [Related]
19. Green synthesis of silver nanoparticles using cellulose extracted from an aquatic weed; water hyacinth. Mochochoko T; Oluwafemi OS; Jumbam DN; Songca SP Carbohydr Polym; 2013 Oct; 98(1):290-4. PubMed ID: 23987347 [TBL] [Abstract][Full Text] [Related]
20. Catalytic reduction of 4-nitrophenol by silver nanoparticles stabilized on environmentally benign macroscopic biopolymer hydrogel. Ai L; Jiang J Bioresour Technol; 2013 Mar; 132():374-7. PubMed ID: 23206807 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]