BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27987985)

  • 1. NMR characterization of methylcellulose: Chemical shift assignment and mole fraction of monomers in the polymer chains.
    Kono H; Fujita S; Tajima K
    Carbohydr Polym; 2017 Feb; 157():728-738. PubMed ID: 27987985
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NMR characterization of sodium carboxymethyl cellulose: Substituent distribution and mole fraction of monomers in the polymer chains.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Aug; 146():1-9. PubMed ID: 27112844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Determination of mole fractions of ethyl-cellulose-containing monomers by NMR.
    Kono H
    Carbohydr Res; 2017 Jun; 445():51-60. PubMed ID: 28402900
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NMR characterization of sodium carboxymethyl cellulose 2: Chemical shift assignment and conformation analysis of substituent groups.
    Kono H; Oshima K; Hashimoto H; Shimizu Y; Tajima K
    Carbohydr Polym; 2016 Oct; 150():241-9. PubMed ID: 27312635
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NMR characterization of cellulose acetate: chemical shift assignments, substituent effects, and chemical shift additivity.
    Kono H; Hashimoto H; Shimizu Y
    Carbohydr Polym; 2015 Mar; 118():91-100. PubMed ID: 25542112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR characterization of cellulose acetate: Mole fraction of monomers in cellulose acetate determined from carbonyl carbon resonances.
    Kono H; Oka C; Kishimoto R; Fujita S
    Carbohydr Polym; 2017 Aug; 170():23-32. PubMed ID: 28521991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two-dimensional NMR data of a series of methylcellulose with different degrees of substitution.
    Kono H
    Data Brief; 2018 Jun; 18():1088-1098. PubMed ID: 29900279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substituent distribution of propyl cellulose studied by nuclear magnetic resonance.
    Kono H; Numata J
    Carbohydr Res; 2020 Sep; 495():108067. PubMed ID: 32739678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemical shift assignment of the complicated monomers comprising cellulose acetate by two-dimensional NMR spectroscopy.
    Kono H
    Carbohydr Res; 2013 Jun; 375():136-44. PubMed ID: 23707362
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ¹H and ¹³C chemical shift assignment of the monomers that comprise carboxymethyl cellulose.
    Kono H
    Carbohydr Polym; 2013 Sep; 97(2):384-90. PubMed ID: 23911461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2-O-Methyl- and 3,6-di-O-methyl-cellulose from natural cellulose: synthesis and structure characterization.
    Nakagawa A; Ishizu C; Sarbova V; Koschella A; Takano T; Heinze T; Kamitakahara H
    Biomacromolecules; 2012 Sep; 13(9):2760-8. PubMed ID: 22817399
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Syntheses and comparison of 2,6-di-O-methyl celluloses from natural and synthetic celluloses.
    Kamitakahara H; Koschella A; Mikawa Y; Nakatsubo F; Heinze T; Klemm D
    Macromol Biosci; 2008 Jul; 8(7):690-700. PubMed ID: 18383569
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The effect of chemical heterogeneity of HPMC on polymer release from matrix tablets.
    Viridén A; Wittgren B; Andersson T; Larsson A
    Eur J Pharm Sci; 2009 Mar; 36(4-5):392-400. PubMed ID: 19049865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advanced characterization of regioselectively substituted methylcellulose model compounds by DNP enhanced solid-state NMR spectroscopy.
    Berruyer P; Gericke M; Moutzouri P; Jakobi D; Bardet M; Karlson L; Schantz S; Heinze T; Emsley L
    Carbohydr Polym; 2021 Jun; 262():117944. PubMed ID: 33838821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substituent effects on 15N NMR chemical shifts in selected N-alkylthiohydroxamic acids. A comparative study.
    Przychodzeń W; Doszczak L; Rachon J
    Magn Reson Chem; 2005 Jan; 43(1):27-30. PubMed ID: 15390022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H, 13C and 19F NMR spectroscopy of polyfluorinated ureas. Correlations involving NMR chemical shifts and electronic substituent effects.
    Abad A; Agulló C; Cuñat AC; Vilanova C
    Magn Reson Chem; 2005 May; 43(5):389-97. PubMed ID: 15706610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The family of ferrocene-stabilized silylium ions: synthesis, 29Si NMR characterization, Lewis acidity, substituent scrambling, and quantum-chemical analyses.
    Müther K; Hrobárik P; Hrobáriková V; Kaupp M; Oestreich M
    Chemistry; 2013 Dec; 19(49):16579-94. PubMed ID: 24151198
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent effects in the 13C NMR chemical shifts of alpha-mono-substituted acetonitriles.
    Reis AK; Rittner R
    Spectrochim Acta A Mol Biomol Spectrosc; 2007 Mar; 66(3):681-5. PubMed ID: 16863701
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete (1)H and (13)C NMR chemical shift assignments of mono-, di-, and trisaccharides as basis for NMR chemical shift predictions of polysaccharides using the computer program casper.
    Roslund MU; Säwén E; Landström J; Rönnols J; Jonsson KH; Lundborg M; Svensson MV; Widmalm G
    Carbohydr Res; 2011 Aug; 346(11):1311-9. PubMed ID: 21621752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endoglucanase sensitivity for substituents in methyl cellulose hydrolysis studied using MALDI-TOFMS for oligosaccharide analysis and structural analysis of enzyme active sites.
    Schagerlöf U; Schagerlöf H; Momcilovic D; Brinkmalm G; Tjerneld F
    Biomacromolecules; 2007 Aug; 8(8):2358-65. PubMed ID: 17616166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.