BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27987990)

  • 1. One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles.
    Park H; Kim MH; Yoon YI; Park WH
    Carbohydr Polym; 2017 Feb; 157():775-783. PubMed ID: 27987990
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Injectable methylcellulose hydrogel containing calcium phosphate nanoparticles for bone regeneration.
    Kim MH; Kim BS; Park H; Lee J; Park WH
    Int J Biol Macromol; 2018 Apr; 109():57-64. PubMed ID: 29246871
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing.
    Kim MH; Park H; Nam HC; Park SR; Jung JY; Park WH
    Carbohydr Polym; 2018 Feb; 181():579-586. PubMed ID: 29254010
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pH and precursor salts on in situ formation of calcium phosphate nanoparticles in methylcellulose hydrogel.
    Kim MH; Park H; Park WH
    Carbohydr Polym; 2018 Jul; 191():176-182. PubMed ID: 29661307
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An injectable carboxymethyl chitosan-methylcellulose-pluronic hydrogel for the encapsulation of meloxicam loaded nanoparticles.
    Fattahpour S; Shamanian M; Tavakoli N; Fathi M; Sadeghi-Aliabadi H; Sheykhi SR; Fesharaki M; Fattahpour S
    Int J Biol Macromol; 2020 May; 151():220-229. PubMed ID: 32027902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of vitamin derivatives on gelation rate and gel strength of methylcellulose.
    Kim MH; Park H; Shin JY; Park WH
    Carbohydr Polym; 2018 Sep; 196():414-421. PubMed ID: 29891313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel.
    Bain MK; Bhowmick B; Maity D; Mondal D; Mollick MM; Rana D; Chattopadhyay D
    Int J Biol Macromol; 2012 Dec; 51(5):831-6. PubMed ID: 22884434
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property.
    Liu Z; Yao P
    Carbohydr Polym; 2015 Nov; 132():490-8. PubMed ID: 26256374
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Injectable
    Bonetti L; Borsacchi S; Soriente A; Boccali A; Calucci L; Raucci MG; Altomare L
    J Mater Chem B; 2024 May; 12(18):4427-4440. PubMed ID: 38629219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of PEG-salt mixture on the gelation temperature and morphology of MC gel for sustained delivery of drug.
    Bain MK; Maity D; Bhowmick B; Mondal D; Mollick MM; Sarkar G; Bhowmik M; Rana D; Chattopadhyay D
    Carbohydr Polym; 2013 Jan; 91(2):529-36. PubMed ID: 23121941
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microphase Separation and Gelation of Methylcellulose in the Presence of Gallic Acid and NaCl as an In Situ Gel-Forming Drug Delivery System.
    Sangfai T; Tantishaiyakul V; Hirun N; Li L
    AAPS PharmSciTech; 2017 Apr; 18(3):605-616. PubMed ID: 27170164
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gelation behavior of in situ forming gels based on HPMC and biphasic calcium phosphate nanoparticles.
    Marefat Seyedlar R; Nodehi A; Atai M; Imani M
    Carbohydr Polym; 2014 Jan; 99():257-63. PubMed ID: 24274504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation and properties of a novel thermo-sensitive hydrogel based on chitosan/hydroxypropyl methylcellulose/glycerol.
    Wang T; Chen L; Shen T; Wu D
    Int J Biol Macromol; 2016 Dec; 93(Pt A):775-782. PubMed ID: 27640090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of a cellulosic ether carrier on the structure of biphasic calcium phosphate ceramic particles in an injectable composite material.
    Dupraz A; Nguyen TP; Richard M; Daculsi G; Passuti N
    Biomaterials; 1999 Apr; 20(7):663-73. PubMed ID: 10208409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium phosphate incorporated in silk fibroin/methylcellulose based injectable hydrogel: Preparation, characterization, and in vitro biological evaluation for bone defect treatment.
    Phewchan P; Laoruengthana A; Tiyaboonchai W
    J Biomed Mater Res B Appl Biomater; 2023 Sep; 111(9):1640-1652. PubMed ID: 37194686
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Radiation synthesis and drug delivery properties of interpenetrating networks (IPNs) based on poly(vinyl alcohol)/ methylcellulose blend hydrogels.
    El-Naggar AWM; Senna MM; Mostafa TA; Helal RH
    Int J Biol Macromol; 2017 Sep; 102():1045-1051. PubMed ID: 28450244
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel method using a temperature-sensitive polymer (methylcellulose) to thermally gel aqueous alginate as a pH-sensitive hydrogel.
    Liang HF; Hong MH; Ho RM; Chung CK; Lin YH; Chen CH; Sung HW
    Biomacromolecules; 2004; 5(5):1917-25. PubMed ID: 15360306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.