These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27988442)

  • 1. Regional distribution of circumferential residual strains in the human aorta according to age and gender.
    Sokolis DP; Savva GD; Papadodima SA; Kourkoulis SK
    J Mech Behav Biomed Mater; 2017 Mar; 67():87-100. PubMed ID: 27988442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variation of Axial Residual Strains Along the Course and Circumference of Human Aorta Considering Age and Gender.
    Sokolis DP; Bompas A; Papadodima SA; Kourkoulis SK
    J Biomech Eng; 2020 Feb; 142(2):. PubMed ID: 31141590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of aneurysm on the directional, regional, and layer distribution of residual strains in ascending thoracic aorta.
    Sokolis DP
    J Mech Behav Biomed Mater; 2015 Jun; 46():229-43. PubMed ID: 25828156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Layer-Specific Residual Deformations and Their Variation Along the Human Aorta.
    Sokolis DP; Gouskou N; Papadodima SA; Kourkoulis SK
    J Biomech Eng; 2021 Sep; 143(9):. PubMed ID: 33876198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Regional and age-dependent residual strains, curvature, and dimensions of the human ureter.
    Petsepe DC; Kourkoulis SK; Papadodima SA; Sokolis DP
    Proc Inst Mech Eng H; 2018 Feb; 232(2):149-162. PubMed ID: 29278079
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual strains in ascending thoracic aortic aneurysms: The effect of valve type, layer, and circumferential quadrant.
    Sokolis DP; Ch Markidi D; Iliopoulos DC; Kourkoulis SK
    J Biomech; 2023 Jan; 147():111432. PubMed ID: 36634401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regional distribution of layer-specific circumferential residual deformations and opening angles in the porcine aorta.
    Sokolis DP
    J Biomech; 2019 Nov; 96():109335. PubMed ID: 31540821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical characterization of human aortas from pressurization testing and a paradigm shift for circumferential residual stress.
    Labrosse MR; Gerson ER; Veinot JP; Beller CJ
    J Mech Behav Biomed Mater; 2013 Jan; 17():44-55. PubMed ID: 23127625
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-course of axial residual strain remodeling and layer-specific thickening during aging along the human aorta.
    Sokolis DP
    J Biomech; 2020 Nov; 112():110065. PubMed ID: 33035841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of the regional distribution of normalized circumferential strain in the thoracic and abdominal aorta using DENSE cardiovascular magnetic resonance.
    Wilson JS; Taylor WR; Oshinski J
    J Cardiovasc Magn Reson; 2019 Sep; 21(1):59. PubMed ID: 31522679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct measurement of transverse residual strains in aorta.
    Han HC; Fung YC
    Am J Physiol; 1996 Feb; 270(2 Pt 2):H750-9. PubMed ID: 8779853
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Age- and region-related changes in the biomechanical properties and composition of the human ureter.
    Sokolis DP; Petsepe DC; Papadodima SA; Kourkoulis SK
    J Biomech; 2017 Jan; 51():57-64. PubMed ID: 27939352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Species dependence of the zero-stress state of aorta: pig versus rat.
    Han HC; Fung YC
    J Biomech Eng; 1991 Nov; 113(4):446-51. PubMed ID: 1762442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between hypertension, hypertrophy, and opening angle of zero-stress state of arteries following aortic constriction.
    Liu SQ; Fung YC
    J Biomech Eng; 1989 Nov; 111(4):325-35. PubMed ID: 2486372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Glycosaminoglycans modulate compressive stiffness and circumferential residual stress in the porcine thoracic aorta.
    Ghadie NM; Labrosse MR; St-Pierre JP
    Acta Biomater; 2023 Oct; 170():556-566. PubMed ID: 37683966
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of age on residual strain in the rat aorta.
    Badreck-Amoudi A; Patel CK; Kane TP; Greenwald SE
    J Biomech Eng; 1996 Nov; 118(4):440-4. PubMed ID: 8950646
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modelling the layer-specific three-dimensional residual stresses in arteries, with an application to the human aorta.
    Holzapfel GA; Ogden RW
    J R Soc Interface; 2010 May; 7(46):787-99. PubMed ID: 19828496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Remodelling of the zero-stress state and residual strains in apoE-deficient mouse aorta.
    Gregersen H; Zhao J; Lu X; Zhou J; Falk E
    Biorheology; 2007; 44(2):75-89. PubMed ID: 17538200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of age and sex on residual stress in the aorta.
    Saini A; Berry C; Greenwald S
    J Vasc Res; 1995; 32(6):398-405. PubMed ID: 8562812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical behavior of human aortas: Experiments, material constants and 3-D finite element modeling including residual stress.
    Labrosse MR; Beller CJ; Mesana T; Veinot JP
    J Biomech; 2009 May; 42(8):996-1004. PubMed ID: 19345356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.