These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
410 related articles for article (PubMed ID: 27988798)
1. Novel insights into biosynthesis and uptake of rhamnolipids and their precursors. Wittgens A; Kovacic F; Müller MM; Gerlitzki M; Santiago-Schübel B; Hofmann D; Tiso T; Blank LM; Henkel M; Hausmann R; Syldatk C; Wilhelm S; Rosenau F Appl Microbiol Biotechnol; 2017 Apr; 101(7):2865-2878. PubMed ID: 27988798 [TBL] [Abstract][Full Text] [Related]
2. Heterologous production of long-chain rhamnolipids from Burkholderia glumae in Pseudomonas putida-a step forward to tailor-made rhamnolipids. Wittgens A; Santiago-Schuebel B; Henkel M; Tiso T; Blank LM; Hausmann R; Hofmann D; Wilhelm S; Jaeger KE; Rosenau F Appl Microbiol Biotechnol; 2018 Feb; 102(3):1229-1239. PubMed ID: 29264775 [TBL] [Abstract][Full Text] [Related]
3. rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Déziel E; Lépine F; Milot S; Villemur R Microbiology (Reading); 2003 Aug; 149(Pt 8):2005-2013. PubMed ID: 12904540 [TBL] [Abstract][Full Text] [Related]
4. Biofilm as a production platform for heterologous production of rhamnolipids by the non-pathogenic strain Pseudomonas putida KT2440. Wigneswaran V; Nielsen KF; Sternberg C; Jensen PR; Folkesson A; Jelsbak L Microb Cell Fact; 2016 Oct; 15(1):181. PubMed ID: 27776509 [TBL] [Abstract][Full Text] [Related]
5. Designer rhamnolipids by reduction of congener diversity: production and characterization. Tiso T; Zauter R; Tulke H; Leuchtle B; Li WJ; Behrens B; Wittgens A; Rosenau F; Hayen H; Blank LM Microb Cell Fact; 2017 Dec; 16(1):225. PubMed ID: 29241456 [TBL] [Abstract][Full Text] [Related]
6. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Rahim R; Ochsner UA; Olvera C; Graninger M; Messner P; Lam JS; Soberón-Chávez G Mol Microbiol; 2001 May; 40(3):708-18. PubMed ID: 11359576 [TBL] [Abstract][Full Text] [Related]
7. Metabolic relationship between polyhydroxyalkanoic acid and rhamnolipid synthesis in Pseudomonas aeruginosa: comparative ¹³C NMR analysis of the products in wild-type and mutants. Choi MH; Xu J; Gutierrez M; Yoo T; Cho YH; Yoon SC J Biotechnol; 2011 Jan; 151(1):30-42. PubMed ID: 21029757 [TBL] [Abstract][Full Text] [Related]
8. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Cabrera-Valladares N; Richardson AP; Olvera C; Treviño LG; Déziel E; Lépine F; Soberón-Chávez G Appl Microbiol Biotechnol; 2006 Nov; 73(1):187-94. PubMed ID: 16847602 [TBL] [Abstract][Full Text] [Related]
9. The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-L-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor σS. Aguirre-Ramírez M; Medina G; González-Valdez A; Grosso-Becerra V; Soberón-Chávez G Microbiology (Reading); 2012 Apr; 158(Pt 4):908-916. PubMed ID: 22262098 [TBL] [Abstract][Full Text] [Related]
10. Pseudomonas aeruginosa ATCC 9027 is a non-virulent strain suitable for mono-rhamnolipids production. Grosso-Becerra MV; González-Valdez A; Granados-Martínez MJ; Morales E; Servín-González L; Méndez JL; Delgado G; Morales-Espinosa R; Ponce-Soto GY; Cocotl-Yañez M; Soberón-Chávez G Appl Microbiol Biotechnol; 2016 Dec; 100(23):9995-10004. PubMed ID: 27566690 [TBL] [Abstract][Full Text] [Related]
11. Microbial production of rhamnolipids: opportunities, challenges and strategies. Chong H; Li Q Microb Cell Fact; 2017 Aug; 16(1):137. PubMed ID: 28779757 [TBL] [Abstract][Full Text] [Related]
12. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Wittgens A; Tiso T; Arndt TT; Wenk P; Hemmerich J; Müller C; Wichmann R; Küpper B; Zwick M; Wilhelm S; Hausmann R; Syldatk C; Rosenau F; Blank LM Microb Cell Fact; 2011 Oct; 10():80. PubMed ID: 21999513 [TBL] [Abstract][Full Text] [Related]
13. Pantoea sp. P37 as a novel nonpathogenic host for the heterologous production of rhamnolipids. Nawrath MM; Ottenheim C; Wu JC; Zimmermann W Microbiologyopen; 2020 May; 9(5):e1019. PubMed ID: 32113194 [TBL] [Abstract][Full Text] [Related]
14. Selection and partial characterization of a Pseudomonas aeruginosa mono-rhamnolipid deficient mutant. Wild M; Caro AD; Hernández AL; Miller RM; Soberón-Chávez G FEMS Microbiol Lett; 1997 Aug; 153(2):279-85. PubMed ID: 9271853 [TBL] [Abstract][Full Text] [Related]
15. Biosynthesis of di-rhamnolipids and variations of congeners composition in genetically-engineered Escherichia coli. Du J; Zhang A; Hao J; Wang J Biotechnol Lett; 2017 Jul; 39(7):1041-1048. PubMed ID: 28374071 [TBL] [Abstract][Full Text] [Related]
16. Comparative analysis of rhamnolipid congener synthesis in neotype Pseudomonas aeruginosa ATCC 10145 and two marine isolates. Du J; Zhang A; Zhang X; Si X; Cao J Bioresour Technol; 2019 Aug; 286():121380. PubMed ID: 31048264 [TBL] [Abstract][Full Text] [Related]
17. Burkholderia thailandensis harbors two identical rhl gene clusters responsible for the biosynthesis of rhamnolipids. Dubeau D; Déziel E; Woods DE; Lépine F BMC Microbiol; 2009 Dec; 9():263. PubMed ID: 20017946 [TBL] [Abstract][Full Text] [Related]
18. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Ochsner UA; Fiechter A; Reiser J J Biol Chem; 1994 Aug; 269(31):19787-95. PubMed ID: 8051059 [TBL] [Abstract][Full Text] [Related]
19. Anaerobic biosynthesis of rhamnolipids by Pseudomonas aeruginosa: performance, mechanism and its application potential for enhanced oil recovery. Zhao F; Wang Q; Zhang Y; Lei L Microb Cell Fact; 2021 May; 20(1):103. PubMed ID: 34016105 [TBL] [Abstract][Full Text] [Related]
20. Carbon source effects on the mono/dirhamnolipid ratio produced by Pseudomonas aeruginosa L05, a new human respiratory isolate. Nicolò MS; Cambria MG; Impallomeni G; Rizzo MG; Pellicorio C; Ballistreri A; Guglielmino SPP N Biotechnol; 2017 Oct; 39(Pt A):36-41. PubMed ID: 28587884 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]