BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 27989090)

  • 1. Biomechanical Properties of Fiber Bundle and Membrane Mesostructures of the Porcine Aortic Valve.
    Rock CA; Doehring TC
    J Heart Valve Dis; 2016 Jan; 25(1):82-89. PubMed ID: 27989090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesostructures of the aortic valve.
    Doehring TC; Kahelin M; Vesely I
    J Heart Valve Dis; 2005 Sep; 14(5):679-86. PubMed ID: 16245508
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct measurement of nonuniform large deformations in soft tissues during uniaxial extension.
    Doehring TC; Kahelin M; Vesely I
    J Biomech Eng; 2009 Jun; 131(6):061001. PubMed ID: 19449955
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The glutaraldehyde-stabilized porcine aortic valve xenograft. I. Tensile viscoelastic properties of the fresh leaflet material.
    Lee JM; Courtman DW; Boughner DR
    J Biomed Mater Res; 1984 Jan; 18(1):61-77. PubMed ID: 6699033
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical properties of porcine aortic valve tissues.
    Sauren AA; van Hout MC; van Steenhoven AA; Veldpaus FE; Janssen JD
    J Biomech; 1983; 16(5):327-37. PubMed ID: 6885834
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complex collagen fiber and membrane morphologies of the whole porcine aortic valve.
    Rock CA; Han L; Doehring TC
    PLoS One; 2014; 9(1):e86087. PubMed ID: 24465887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves.
    Korossis SA; Booth C; Wilcox HE; Watterson KG; Kearney JN; Fisher J; Ingham E
    J Heart Valve Dis; 2002 Jul; 11(4):463-71. PubMed ID: 12150291
    [TBL] [Abstract][Full Text] [Related]  

  • 8. St Jude Epic heart valve bioprostheses versus native human and porcine aortic valves - comparison of mechanical properties.
    Kalejs M; Stradins P; Lacis R; Ozolanta I; Pavars J; Kasyanov V
    Interact Cardiovasc Thorac Surg; 2009 May; 8(5):553-6. PubMed ID: 19190025
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Aortic valve leaflet mechanical properties facilitate diastolic valve function.
    Koch TM; Reddy BD; Zilla P; Franz T
    Comput Methods Biomech Biomed Engin; 2010; 13(2):225-34. PubMed ID: 19657802
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Vasoactive agents alter the biomechanical properties of aortic heart valve leaflets in a time-dependent manner.
    Warnock JN; Gamez CA; Metzler SA; Chen J; Elder SH; Liao J
    J Heart Valve Dis; 2010 Jan; 19(1):86-95; discussion 96. PubMed ID: 20329494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanical properties of porcine pulmonary valve leaflets: how do they differ from aortic leaflets?
    Christie GW; Barratt-Boyes BG
    Ann Thorac Surg; 1995 Aug; 60(2 Suppl):S195-9. PubMed ID: 7646158
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: bending stiffness, neutral axis and shear measurements.
    Vesely I; Boughner D
    J Biomech; 1989; 22(6-7):655-71. PubMed ID: 2509479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Natural preload of aortic valve leaflet components during glutaraldehyde fixation: effects on tissue mechanics.
    Vesely I; Lozon A
    J Biomech; 1993 Feb; 26(2):121-31. PubMed ID: 8429055
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study of different tissue materials for bioprosthetic aortic valves using experimental assays and finite element analysis.
    Rassoli A; Fatouraee N; Guidoin R; Zhang Z; Ravaghi S
    Comput Methods Programs Biomed; 2022 Jun; 220():106813. PubMed ID: 35461127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of enzyme-based removal of collagen and elastin constituents on the biaxial mechanical responses of porcine atrioventricular heart valve anterior leaflets.
    Ross CJ; Laurence DW; Echols AL; Babu AR; Gu T; Duginski GA; Johns CH; Mullins BT; Casey KM; Laurence KA; Zhao YD; Amini R; Fung KM; Mir A; Burkhart HM; Wu Y; Holzapfel GA; Lee CH
    Acta Biomater; 2021 Nov; 135():425-440. PubMed ID: 34481053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fiber-progressive-engagement model to evaluate the composition, microstructure, and nonlinear pseudoelastic behavior of porcine arteries and decellularized derivatives.
    Lin CH; Kao YC; Lin YH; Ma H; Tsay RY
    Acta Biomater; 2016 Dec; 46():101-111. PubMed ID: 27667016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical and structural properties of the explanted bioprosthetic valve leaflets.
    Purinya B; Kasyanov V; Volkolakov J; Latsis R; Tetere G
    J Biomech; 1994 Jan; 27(1):1-11. PubMed ID: 8106530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In-vitro assessment of the functional performance of the decellularized intact porcine aortic root.
    Korossis SA; Wilcox HE; Watterson KG; Kearney JN; Ingham E; Fisher J
    J Heart Valve Dis; 2005 May; 14(3):408-21; discussion 422. PubMed ID: 15974537
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Histologic, histochemical, and biomechanical properties of fragments isolated from the anterior wall of abdominal aortic aneurysms.
    Tavares Monteiro JA; da Silva ES; Raghavan ML; Puech-Leão P; de Lourdes Higuchi M; Otoch JP
    J Vasc Surg; 2014 May; 59(5):1393-401.e1-2. PubMed ID: 23891493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pulmonary valve. Is it mechanically suitable for use as an aortic valve replacement?
    David H; Boughner DR; Vesely I; Gerosa G
    ASAIO J; 1994; 40(2):206-12. PubMed ID: 8003760
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.