These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27989138)

  • 21. Adverse outcome pathways: opportunities, limitations and open questions.
    Leist M; Ghallab A; Graepel R; Marchan R; Hassan R; Bennekou SH; Limonciel A; Vinken M; Schildknecht S; Waldmann T; Danen E; van Ravenzwaay B; Kamp H; Gardner I; Godoy P; Bois FY; Braeuning A; Reif R; Oesch F; Drasdo D; Höhme S; Schwarz M; Hartung T; Braunbeck T; Beltman J; Vrieling H; Sanz F; Forsby A; Gadaleta D; Fisher C; Kelm J; Fluri D; Ecker G; Zdrazil B; Terron A; Jennings P; van der Burg B; Dooley S; Meijer AH; Willighagen E; Martens M; Evelo C; Mombelli E; Taboureau O; Mantovani A; Hardy B; Koch B; Escher S; van Thriel C; Cadenas C; Kroese D; van de Water B; Hengstler JG
    Arch Toxicol; 2017 Nov; 91(11):3477-3505. PubMed ID: 29051992
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway.
    Nicholas TP; Boyes WK; Scoville DK; Workman TW; Kavanagh TJ; Altemeier WA; Faustman EM
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2021 Sep; 13(5):e1708. PubMed ID: 33768701
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The adverse outcome pathway for rodent liver tumor promotion by sustained activation of the aryl hydrocarbon receptor.
    Becker RA; Patlewicz G; Simon TW; Rowlands JC; Budinsky RA
    Regul Toxicol Pharmacol; 2015 Oct; 73(1):172-90. PubMed ID: 26145830
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Development of an adverse outcome pathway network for breast cancer: a comprehensive representation of the pathogenesis, complexity and diversity of the disease.
    Del'haye GG; Nulmans I; Bouteille SP; Sermon K; Wellekens B; Rombaut M; Vanhaecke T; Vander Heyden Y; De Kock J
    Arch Toxicol; 2022 Nov; 96(11):2881-2897. PubMed ID: 35927586
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Challenges in the quantification approach to a radiation relevant adverse outcome pathway for lung cancer.
    Stainforth R; Schuemann J; McNamara AL; Wilkins RC; Chauhan V
    Int J Radiat Biol; 2021; 97(1):85-101. PubMed ID: 32909875
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increasing Scientific Confidence in Adverse Outcome Pathways: Application of Tailored Bradford-Hill Considerations for Evaluating Weight of Evidence.
    Becker RA; Ankley GT; Edwards SW; Kennedy SW; Linkov I; Meek B; Sachana M; Segner H; Van Der Burg B; Villeneuve DL; Watanabe H; Barton-Maclaren TS
    Regul Toxicol Pharmacol; 2015 Aug; 72(3):514-37. PubMed ID: 25863193
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of the Adverse Outcome Pathway Concept to
    Jarzina S; Di Fiore S; Ellinger B; Reiser P; Frank S; Glaser M; Wu J; Taverne FJ; Kramer NI; Mally A
    Front Toxicol; 2022; 4():864441. PubMed ID: 35516525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adverse outcome pathway development II: best practices.
    Villeneuve DL; Crump D; Garcia-Reyero N; Hecker M; Hutchinson TH; LaLone CA; Landesmann B; Lettieri T; Munn S; Nepelska M; Ottinger MA; Vergauwen L; Whelan M
    Toxicol Sci; 2014 Dec; 142(2):321-30. PubMed ID: 25466379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Integrate mechanistic evidence from new approach methodologies (NAMs) into a read-across assessment to characterise trends in shared mode of action.
    Escher SE; Aguayo-Orozco A; Benfenati E; Bitsch A; Braunbeck T; Brotzmann K; Bois F; van der Burg B; Castel J; Exner T; Gadaleta D; Gardner I; Goldmann D; Hatley O; Golbamaki N; Graepel R; Jennings P; Limonciel A; Long A; Maclennan R; Mombelli E; Norinder U; Jain S; Capinha LS; Taboureau OT; Tolosa L; Vrijenhoek NG; van Vugt-Lussenburg BMA; Walker P; van de Water B; Wehr M; White A; Zdrazil B; Fisher C
    Toxicol In Vitro; 2022 Mar; 79():105269. PubMed ID: 34757180
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development and analysis of an adverse outcome pathway network for human neurotoxicity.
    Spinu N; Bal-Price A; Cronin MTD; Enoch SJ; Madden JC; Worth AP
    Arch Toxicol; 2019 Oct; 93(10):2759-2772. PubMed ID: 31444508
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative Predictions for Molecular Initiating Events Using Three-Dimensional Quantitative Structure-Activity Relationships.
    Allen TEH; Goodman JM; Gutsell S; Russell PJ
    Chem Res Toxicol; 2020 Feb; 33(2):324-332. PubMed ID: 31517476
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Extracting and Benchmarking Emerging Adverse Outcome Pathway Knowledge.
    Pollesch NL; Villeneuve DL; O'Brien JM
    Toxicol Sci; 2019 Apr; 168(2):349-364. PubMed ID: 30715536
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The 21st Century movement within the area of skin sensitization assessment: From the animal context towards current human-relevant in vitro solutions.
    de Ávila RI; Lindstedt M; Valadares MC
    Regul Toxicol Pharmacol; 2019 Nov; 108():104445. PubMed ID: 31430506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Molecular Pathway and AOP Development Using Gene Network Analysis].
    Tanabe S; Hirose A; Whelan M; Yamada T
    Yakugaku Zasshi; 2020; 140(4):485-489. PubMed ID: 32238629
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel QSAR Models for Molecular Initiating Event Modeling in Two Intersecting Adverse Outcome Pathways Based Pulmonary Fibrosis Prediction for Biocidal Mixtures.
    Seo M; Chae CH; Lee Y; Kim HR; Kim J
    Toxics; 2021 Mar; 9(3):. PubMed ID: 33809804
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action.
    Lalone CA; Villeneuve DL; Burgoon LD; Russom CL; Helgen HW; Berninger JP; Tietge JE; Severson MN; Cavallin JE; Ankley GT
    Aquat Toxicol; 2013 Nov; 144-145():141-54. PubMed ID: 24177217
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A modular approach for assembly of quantitative adverse outcome pathways.
    Foran CM; Rycroft T; Keisler J; Perkins EJ; Linkov I; Garcia-Reyero N
    ALTEX; 2019; 36(3):353-362. PubMed ID: 30662994
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Advancing the adverse outcome pathway framework-An international horizon scanning approach.
    LaLone CA; Ankley GT; Belanger SE; Embry MR; Hodges G; Knapen D; Munn S; Perkins EJ; Rudd MA; Villeneuve DL; Whelan M; Willett C; Zhang X; Hecker M
    Environ Toxicol Chem; 2017 Jun; 36(6):1411-1421. PubMed ID: 28543973
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An adverse outcome pathway on the disruption of retinoic acid metabolism leading to developmental craniofacial defects.
    Menegola E; Veltman CHJ; Battistoni M; Di Renzo F; Moretto A; Metruccio F; Beronius A; Zilliacus J; Kyriakopoulou K; Spyropoulou A; Machera K; van der Ven LTM; Luijten M
    Toxicology; 2021 Jun; 458():152843. PubMed ID: 34186166
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Probabilistic modelling of developmental neurotoxicity based on a simplified adverse outcome pathway network.
    Spînu N; Cronin MTD; Lao J; Bal-Price A; Campia I; Enoch SJ; Madden JC; Mora Lagares L; Novič M; Pamies D; Scholz S; Villeneuve DL; Worth AP
    Comput Toxicol; 2022 Feb; 21():100206. PubMed ID: 35211661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.