These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
530 related articles for article (PubMed ID: 27989442)
1. How the Eukaryotic Replisome Achieves Rapid and Efficient DNA Replication. Yeeles JTP; Janska A; Early A; Diffley JFX Mol Cell; 2017 Jan; 65(1):105-116. PubMed ID: 27989442 [TBL] [Abstract][Full Text] [Related]
2. Reconstitution of translesion synthesis reveals a mechanism of eukaryotic DNA replication restart. Guilliam TA; Yeeles JTP Nat Struct Mol Biol; 2020 May; 27(5):450-460. PubMed ID: 32341533 [TBL] [Abstract][Full Text] [Related]
3. Quality control mechanisms exclude incorrect polymerases from the eukaryotic replication fork. Schauer GD; O'Donnell ME Proc Natl Acad Sci U S A; 2017 Jan; 114(4):675-680. PubMed ID: 28069954 [TBL] [Abstract][Full Text] [Related]
4. Checkpoint Kinase Rad53 Couples Leading- and Lagging-Strand DNA Synthesis under Replication Stress. Gan H; Yu C; Devbhandari S; Sharma S; Han J; Chabes A; Remus D; Zhang Z Mol Cell; 2017 Oct; 68(2):446-455.e3. PubMed ID: 29033319 [TBL] [Abstract][Full Text] [Related]
5. Single-molecule visualization of Lewis JS; Spenkelink LM; Schauer GD; Hill FR; Georgescu RE; O'Donnell ME; van Oijen AM Proc Natl Acad Sci U S A; 2017 Oct; 114(40):10630-10635. PubMed ID: 28923950 [TBL] [Abstract][Full Text] [Related]
6. Rad53 limits CMG helicase uncoupling from DNA synthesis at replication forks. Devbhandari S; Remus D Nat Struct Mol Biol; 2020 May; 27(5):461-471. PubMed ID: 32341532 [TBL] [Abstract][Full Text] [Related]
7. Increased contribution of DNA polymerase delta to the leading strand replication in yeast with an impaired CMG helicase complex. Dmowski M; Jedrychowska M; Makiela-Dzbenska K; Denkiewicz-Kruk M; Sharma S; Chabes A; Araki H; Fijalkowska IJ DNA Repair (Amst); 2022 Feb; 110():103272. PubMed ID: 35038632 [TBL] [Abstract][Full Text] [Related]
8. Chromatin Constrains the Initiation and Elongation of DNA Replication. Devbhandari S; Jiang J; Kumar C; Whitehouse I; Remus D Mol Cell; 2017 Jan; 65(1):131-141. PubMed ID: 27989437 [TBL] [Abstract][Full Text] [Related]
9. Reconstitution of a eukaryotic replisome reveals suppression mechanisms that define leading/lagging strand operation. Georgescu RE; Schauer GD; Yao NY; Langston LD; Yurieva O; Zhang D; Finkelstein J; O'Donnell ME Elife; 2015 Apr; 4():e04988. PubMed ID: 25871847 [TBL] [Abstract][Full Text] [Related]
10. CMG-Pol epsilon dynamics suggests a mechanism for the establishment of leading-strand synthesis in the eukaryotic replisome. Zhou JC; Janska A; Goswami P; Renault L; Abid Ali F; Kotecha A; Diffley JFX; Costa A Proc Natl Acad Sci U S A; 2017 Apr; 114(16):4141-4146. PubMed ID: 28373564 [TBL] [Abstract][Full Text] [Related]
11. A common mechanism for recruiting the Rrm3 and RTEL1 accessory helicases to the eukaryotic replisome. Olson O; Pelliciari S; Heron ED; Deegan TD EMBO J; 2024 Sep; 43(18):3846-3875. PubMed ID: 39039288 [TBL] [Abstract][Full Text] [Related]
12. Strand-specific analysis shows protein binding at replication forks and PCNA unloading from lagging strands when forks stall. Yu C; Gan H; Han J; Zhou ZX; Jia S; Chabes A; Farrugia G; Ordog T; Zhang Z Mol Cell; 2014 Nov; 56(4):551-63. PubMed ID: 25449133 [TBL] [Abstract][Full Text] [Related]
13. CMG helicase and DNA polymerase ε form a functional 15-subunit holoenzyme for eukaryotic leading-strand DNA replication. Langston LD; Zhang D; Yurieva O; Georgescu RE; Finkelstein J; Yao NY; Indiani C; O'Donnell ME Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15390-5. PubMed ID: 25313033 [TBL] [Abstract][Full Text] [Related]
14. Dpb2 integrates the leading-strand DNA polymerase into the eukaryotic replisome. Sengupta S; van Deursen F; de Piccoli G; Labib K Curr Biol; 2013 Apr; 23(7):543-52. PubMed ID: 23499531 [TBL] [Abstract][Full Text] [Related]
15. Roles for DNA polymerase δ in initiating and terminating leading strand DNA replication. Zhou ZX; Lujan SA; Burkholder AB; Garbacz MA; Kunkel TA Nat Commun; 2019 Sep; 10(1):3992. PubMed ID: 31488849 [TBL] [Abstract][Full Text] [Related]
16. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Calzada A; Hodgson B; Kanemaki M; Bueno A; Labib K Genes Dev; 2005 Aug; 19(16):1905-19. PubMed ID: 16103218 [TBL] [Abstract][Full Text] [Related]
17. Fast and efficient DNA replication with purified human proteins. Baris Y; Taylor MRG; Aria V; Yeeles JTP Nature; 2022 Jun; 606(7912):204-210. PubMed ID: 35585232 [TBL] [Abstract][Full Text] [Related]
18. Mechanism of asymmetric polymerase assembly at the eukaryotic replication fork. Georgescu RE; Langston L; Yao NY; Yurieva O; Zhang D; Finkelstein J; Agarwal T; O'Donnell ME Nat Struct Mol Biol; 2014 Aug; 21(8):664-70. PubMed ID: 24997598 [TBL] [Abstract][Full Text] [Related]
19. The eukaryotic leading and lagging strand DNA polymerases are loaded onto primer-ends via separate mechanisms but have comparable processivity in the presence of PCNA. Chilkova O; Stenlund P; Isoz I; Stith CM; Grabowski P; Lundström EB; Burgers PM; Johansson E Nucleic Acids Res; 2007; 35(19):6588-97. PubMed ID: 17905813 [TBL] [Abstract][Full Text] [Related]
20. Cryo-EM Structure of the Fork Protection Complex Bound to CMG at a Replication Fork. Baretić D; Jenkyn-Bedford M; Aria V; Cannone G; Skehel M; Yeeles JTP Mol Cell; 2020 Jun; 78(5):926-940.e13. PubMed ID: 32369734 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]