BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27989653)

  • 1. Co-adaptation of electric organ discharges and chirps in South American ghost knifefishes (Apteronotidae).
    Petzold JM; Marsat G; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):200-215. PubMed ID: 27989653
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evolution of electric communication signals in the South American ghost knifefishes (Gymnotiformes: Apteronotidae): A phylogenetic comparative study using a sequence-based phylogeny.
    Smith AR; Proffitt MR; Ho WW; Mullaney CB; Maldonado-Ocampo JA; Lovejoy NR; Alves-Gomes JA; Smith GT
    J Physiol Paris; 2016 Oct; 110(3 Pt B):302-313. PubMed ID: 27769924
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae).
    Turner CR; Derylo M; de Santana CD; Alves-Gomes JA; Smith GT
    J Exp Biol; 2007 Dec; 210(Pt 23):4104-22. PubMed ID: 18025011
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evolution and hormonal regulation of sex differences in the electrocommunication behavior of ghost knifefishes (Apteronotidae).
    Smith GT
    J Exp Biol; 2013 Jul; 216(Pt 13):2421-33. PubMed ID: 23761467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of difference frequency on electrocommunication: chirp production and encoding in a species of weakly electric fish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE; Benda J
    J Physiol Paris; 2008; 102(4-6):164-72. PubMed ID: 18984046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arginine vasotocin modulates a sexually dimorphic communication behavior in the weakly electric fish Apteronotus leptorhynchus.
    Bastian J; Schniederjan S; Nguyenkim J
    J Exp Biol; 2001 Jun; 204(Pt 11):1909-23. PubMed ID: 11441033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stimulus frequency differentially affects chirping in two species of weakly electric fish: implications for the evolution of signal structure and function.
    Kolodziejski JA; Sanford SE; Smith GT
    J Exp Biol; 2007 Jul; 210(Pt 14):2501-9. PubMed ID: 17601954
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Serotonergic activation of 5HT1A and 5HT2 receptors modulates sexually dimorphic communication signals in the weakly electric fish Apteronotus leptorhynchus.
    Smith GT; Combs N
    Horm Behav; 2008 Jun; 54(1):69-82. PubMed ID: 18336816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinctive mechanisms underlie the emission of social electric signals of submission in
    Comas V; Langevin K; Silva A; Borde M
    J Exp Biol; 2019 Jun; 222(Pt 11):. PubMed ID: 31085603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structure and sexual dimorphism of the electrocommunication signals of the weakly electric fish, Adontosternarchus devenanzii.
    Zhou M; Smith GT
    J Exp Biol; 2006 Dec; 209(Pt 23):4809-18. PubMed ID: 17114413
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The neuroethology of electrocommunication: how signal background influences sensory encoding and behaviour in Apteronotus leptorhynchus.
    Walz H; Hupé GJ; Benda J; Lewis JE
    J Physiol Paris; 2013; 107(1-2):13-25. PubMed ID: 22981958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chirping response of weakly electric knife fish (Apteronotus leptorhynchus) to low-frequency electric signals and to heterospecific electric fish.
    Dunlap KD; DiBenedictis BT; Banever SR
    J Exp Biol; 2010 Jul; 213(Pt 13):2234-42. PubMed ID: 20543122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrocommunication signals in free swimming brown ghost knifefish, Apteronotus leptorhynchus.
    Hupé GJ; Lewis JE
    J Exp Biol; 2008 May; 211(Pt 10):1657-67. PubMed ID: 18456893
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus.
    Zupanc GK
    J Physiol Paris; 2002; 96(5-6):459-72. PubMed ID: 14692494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Proximate and ultimate causes of signal diversity in the electric fish Gymnotus.
    Crampton WG; Rodríguez-Cattáneo A; Lovejoy NR; Caputi AA
    J Exp Biol; 2013 Jul; 216(Pt 13):2523-41. PubMed ID: 23761477
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrocommunication signals and aggressive behavior vary among male morphs in an apteronotid fish, Compsaraia samueli.
    Freiler MK; Proffitt MR; Smith GT
    J Exp Biol; 2022 Jun; 225(12):. PubMed ID: 35603444
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signal Diversification Is Associated with Corollary Discharge Evolution in Weakly Electric Fish.
    Fukutomi M; Carlson BA
    J Neurosci; 2020 Aug; 40(33):6345-6356. PubMed ID: 32661026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Time-domain signal divergence and discrimination without receptor modification in sympatric morphs of electric fishes.
    Arnegard ME; Jackson BS; Hopkins CD
    J Exp Biol; 2006 Jun; 209(Pt 11):2182-98. PubMed ID: 16709920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips.
    Zakon H; Oestreich J; Tallarovic S; Triefenbach F
    J Physiol Paris; 2002; 96(5-6):451-8. PubMed ID: 14692493
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus.
    Dunlap KD; Larkins-Ford J
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2003 Feb; 189(2):153-61. PubMed ID: 12607044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.