These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27989653)

  • 21. Sex steroids and communication signals in electric fish: a tale of two species.
    Zakon HH; Dunlap KD
    Brain Behav Evol; 1999; 54(1):61-9. PubMed ID: 10516405
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electroreception, electrogenesis and electric signal evolution.
    Crampton WGR
    J Fish Biol; 2019 Jul; 95(1):92-134. PubMed ID: 30729523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A JAR of Chirps: The Gymnotiform Chirp Can Function as Both a Communication Signal and a Jamming Avoidance Response.
    Field CE; Petersen TA; Alves-Gomes JA; Braun CB
    Front Integr Neurosci; 2019; 13():55. PubMed ID: 31632247
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Differential production of chirping behavior evoked by electrical stimulation of the weakly electric fish, Apteronotus leptorhynchus.
    Engler G; Zupanc GK
    J Comp Physiol A; 2001 Nov; 187(9):747-56. PubMed ID: 11778836
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electric interactions through chirping behavior in the weakly electric fish, Apteronotus leptorhynchus.
    Zupanc GK; Sîrbulescu RF; Nichols A; Ilies I
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Feb; 192(2):159-73. PubMed ID: 16247622
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric organ discharges and near-field spatiotemporal patterns of the electromotive force in a sympatric assemblage of Neotropical electric knifefish.
    Waddell JC; Rodríguez-Cattáneo A; Caputi AA; Crampton WGR
    J Physiol Paris; 2016 Oct; 110(3 Pt B):164-181. PubMed ID: 27794446
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sex recognition and neuronal coding of electric organ discharge waveform in the pulse-type weakly electric fish, Hypopomus occidentalis.
    Shumway CA; Zelick RD
    J Comp Physiol A; 1988 Aug; 163(4):465-78. PubMed ID: 3184009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Food deprivation reduces and leptin increases the amplitude of an active sensory and communication signal in a weakly electric fish.
    Sinnett PM; Markham MR
    Horm Behav; 2015 May; 71():31-40. PubMed ID: 25870018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electric signals and species recognition in the wave-type gymnotiform fish Apteronotus leptorhynchus.
    Fugère V; Krahe R
    J Exp Biol; 2010 Jan; 213(2):225-36. PubMed ID: 20038655
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated pulse discrimination of two freely-swimming weakly electric fish and analysis of their electrical behavior during dominance contest.
    Guariento RT; Mosqueiro TS; Matias P; Cesarino VB; Almeida LOB; Slaets JFW; Maia LP; Pinto RD
    J Physiol Paris; 2016 Oct; 110(3 Pt B):216-223. PubMed ID: 28188835
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Time domain processing of electric organ discharge waveforms by pulse-type electric fish.
    Hopkins CD; Westby GW
    Brain Behav Evol; 1986; 29(1-2):77-104. PubMed ID: 3594199
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energetic constraints on electric signalling in wave-type weakly electric fishes.
    Reardon EE; Parisi A; Krahe R; Chapman LJ
    J Exp Biol; 2011 Dec; 214(Pt 24):4141-50. PubMed ID: 22116756
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Serotonin in a diencephalic nucleus controlling communication in an electric fish: sexual dimorphism and relationship to indicators of dominance.
    Telgkamp P; Combs N; Smith GT
    Dev Neurobiol; 2007 Feb; 67(3):339-54. PubMed ID: 17443792
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The electric sense of weakly electric fish.
    Heiligenberg W; Bastian J
    Annu Rev Physiol; 1984; 46():561-83. PubMed ID: 6324664
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Petrocephalus of Odzala offer insights into evolutionary patterns of signal diversification in the Mormyridae, a family of weakly electrogenic fishes from Africa.
    Lavoué S; Arnegard ME; Sullivan JP; Hopkins CD
    J Physiol Paris; 2008; 102(4-6):322-39. PubMed ID: 18992333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Sensitivity to novel feedback at different phases of a gymnotid electric organ discharge.
    Schuster S; Otto N
    J Exp Biol; 2002 Nov; 205(Pt 21):3307-20. PubMed ID: 12324540
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Static frequency tuning accounts for changes in neural synchrony evoked by transient communication signals.
    Walz H; Grewe J; Benda J
    J Neurophysiol; 2014 Aug; 112(4):752-65. PubMed ID: 24848476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The evolutionary origins of electric signal complexity.
    Stoddard PK
    J Physiol Paris; 2002; 96(5-6):485-91. PubMed ID: 14692496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Regulation and modulation of electric waveforms in gymnotiform electric fish.
    Stoddard PK; Zakon HH; Markham MR; McAnelly L
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2006 Jun; 192(6):613-24. PubMed ID: 16437223
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electric organ discharge and electrosensory reafference in skates.
    New JG
    Biol Bull; 1994 Aug; 187(1):64-75. PubMed ID: 7918797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.