These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 27989653)

  • 41. Social interactions and cortisol treatment increase the production of aggressive electrocommunication signals in male electric fish, Apteronotus leptorhynchus.
    Dunlap KD; Pelczar PL; Knapp R
    Horm Behav; 2002 Sep; 42(2):97-108. PubMed ID: 12367563
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adrenocorticotropic hormone enhances the masculinity of an electric communication signal by modulating the waveform and timing of action potentials within individual cells.
    Markham MR; Stoddard PK
    J Neurosci; 2005 Sep; 25(38):8746-54. PubMed ID: 16177044
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Derived loss of signal complexity and plasticity in a genus of weakly electric fish.
    Saenz DE; Gu T; Ban Y; Winemiller KO; Markham MR
    J Exp Biol; 2021 Jun; 224(12):. PubMed ID: 34109419
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Ecologically mediated differences in electric organ discharge drive evolution in a sodium channel gene in South American electric fishes.
    Hauser FE; Xiao D; Van Nynatten A; Brochu-De Luca KK; Rajakulendran T; Elbassiouny AE; Sivanesan H; Sivananthan P; Crampton WGR; Lovejoy NR
    Biol Lett; 2024 Feb; 20(2):20230480. PubMed ID: 38412964
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Encoding of social signals in all three electrosensory pathways of Eigenmannia virescens.
    Stöckl A; Sinz F; Benda J; Grewe J
    J Neurophysiol; 2014 Nov; 112(9):2076-91. PubMed ID: 25098964
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Androgens enhance plasticity of an electric communication signal in female knifefish, Brachyhypopomus pinnicaudatus.
    Allee SJ; Markham MR; Stoddard PK
    Horm Behav; 2009 Aug; 56(2):264-73. PubMed ID: 19450600
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Supervised learning algorithm for analysis of communication signals in the weakly electric fish Apteronotus leptorhynchus.
    Lehotzky D; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2024 May; 210(3):443-458. PubMed ID: 37704754
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Multiple cases of striking genetic similarity between alternate electric fish signal morphs in sympatry.
    Arnegard ME; Bogdanowicz SM; Hopkins CD
    Evolution; 2005 Feb; 59(2):324-43. PubMed ID: 15807419
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus.
    Dye J
    J Comp Physiol A; 1987 Aug; 161(2):175-85. PubMed ID: 3625571
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The complexity of high-frequency electric fields degrades electrosensory inputs: implications for the jamming avoidance response in weakly electric fish.
    Shifman AR; Lewis JE
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367237
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Long-term recognition memory of individual conspecifics is associated with telencephalic expression of Egr-1 in the electric fish Apteronotus leptorhynchus.
    Harvey-Girard E; Tweedle J; Ironstone J; Cuddy M; Ellis W; Maler L
    J Comp Neurol; 2010 Jul; 518(14):2666-92. PubMed ID: 20506470
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrocommunication in pulse Gymnotiformes: the role of electric organ discharge (EOD) time course in species identification.
    Waddell JC; Caputi AA
    J Exp Biol; 2020 Aug; 223(Pt 16):. PubMed ID: 32748795
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Signal variation and its morphological correlates in Paramormyrops kingsleyae provide insight into the evolution of electrogenic signal diversity in mormyrid electric fish.
    Gallant JR; Arnegard ME; Sullivan JP; Carlson BA; Hopkins CD
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2011 Aug; 197(8):799-817. PubMed ID: 21505877
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Divergence in androgen sensitivity contributes to population differences in sexual dimorphism of electrocommunication behavior.
    Ho WW; Rack JM; Smith GT
    Horm Behav; 2013 Jan; 63(1):49-53. PubMed ID: 23142327
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Sex differences in the electrocommunication signals of the electric fish Apteronotus bonapartii.
    Ho WW; Fernandes CC; Alves-Gomes JA; Smith GT
    Ethology; 2010 Nov; 116(11):1050-1064. PubMed ID: 20953311
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hormonal and body size correlates of electrocommunication behavior during dyadic interactions in a weakly electric fish, Apteronotus leptorhynchus.
    Dunlap KD
    Horm Behav; 2002 Mar; 41(2):187-94. PubMed ID: 11855903
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A model for studying the energetics of sustained high frequency firing.
    Joos B; Markham MR; Lewis JE; Morris CE
    PLoS One; 2018; 13(4):e0196508. PubMed ID: 29708986
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Social electric signals in freely moving dyads of Brachyhypopomus pinnicaudatus.
    Perrone R; Macadar O; Silva A
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 May; 195(5):501-14. PubMed ID: 19277680
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A hormone-sensitive communication system in an electric fish.
    Bass AH
    J Neurobiol; 1986 May; 17(3):131-55. PubMed ID: 3519861
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Waveform discrimination in a pair of pulse-generating electric fishes.
    Waddell JC; Caputi AA
    J Fish Biol; 2020 Apr; 96(4):1065-1071. PubMed ID: 32077109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.