BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27989687)

  • 41. O-GlcNAcylation of cardiac Nav1.5 contributes to the development of arrhythmias in diabetic hearts.
    Yu P; Hu L; Xie J; Chen S; Huang L; Xu Z; Liu X; Zhou Q; Yuan P; Yan X; Jin J; Shen Y; Zhu W; Fu L; Chen Q; Yu J; Hu J; Cao Q; Wan R; Hong K
    Int J Cardiol; 2018 Jun; 260():74-81. PubMed ID: 29530619
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Contribution of sodium channel neuronal isoform Nav1.1 to late sodium current in ventricular myocytes from failing hearts.
    Mishra S; Reznikov V; Maltsev VA; Undrovinas NA; Sabbah HN; Undrovinas A
    J Physiol; 2015 Mar; 593(6):1409-27. PubMed ID: 25772296
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Single-Molecule Localization of the Cardiac Voltage-Gated Sodium Channel Reveals Different Modes of Reorganization at Cardiomyocyte Membrane Domains.
    Vermij SH; Rougier JS; Agulló-Pascual E; Rothenberg E; Delmar M; Abriel H
    Circ Arrhythm Electrophysiol; 2020 Jul; 13(7):e008241. PubMed ID: 32536203
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Differential inhibition of cardiac and neuronal Na(+) channels by the selective serotonin-norepinephrine reuptake inhibitors duloxetine and venlafaxine.
    Stoetzer C; Papenberg B; Doll T; Völker M; Heineke J; Stoetzer M; Wegner F; Leffler A
    Eur J Pharmacol; 2016 Jul; 783():1-10. PubMed ID: 27130441
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Ubiquitination-activating enzymes UBE1 and UBA6 regulate ubiquitination and expression of cardiac sodium channel Nav1.5.
    Hu Y; Bai X; Zhang C; Chakrabarti S; Tang B; Xiong H; Wang Z; Yu G; Xu C; Chen Q; Wang QK
    Biochem J; 2020 May; 477(9):1683-1700. PubMed ID: 32315024
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Distinctive activation mechanisms and functions for protein kinase Cdelta.
    Steinberg SF
    Biochem J; 2004 Dec; 384(Pt 3):449-59. PubMed ID: 15491280
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Antiarrhythmic effects of (-)-epicatechin-3-gallate, a novel sodium channel agonist in cultured neonatal rat ventricular myocytes.
    Wu AZ; Loh SH; Cheng TH; Lu HH; Lin CI
    Biochem Pharmacol; 2013 Jan; 85(1):69-80. PubMed ID: 23116965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Phosphorylation of smooth muscle 22α facilitates angiotensin II-induced ROS production via activation of the PKCδ-P47phox axis through release of PKCδ and actin dynamics and is associated with hypertrophy and hyperplasia of vascular smooth muscle cells in vitro and in vivo.
    Lv P; Miao SB; Shu YN; Dong LH; Liu G; Xie XL; Gao M; Wang YC; Yin YJ; Wang XJ; Han M
    Circ Res; 2012 Aug; 111(6):697-707. PubMed ID: 22798525
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Proton modulation of cardiac I Na: a potential arrhythmogenic trigger.
    Jones DK; Ruben PC
    Handb Exp Pharmacol; 2014; 221():169-81. PubMed ID: 24737236
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Small G-protein RhoA is a potential inhibitor of cardiac fast sodium current.
    Abramochkin DV; Filatova TS; Pustovit KB; Dzhumaniiazova I; Karpushev AV
    J Physiol Biochem; 2021 Feb; 77(1):13-23. PubMed ID: 33145656
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Assessing use-dependent inhibition of the cardiac Na(+/-) current (I(Na)) in the PatchXpress automated patch clamp.
    Penniman JR; Kim DC; Salata JJ; Imredy JP
    J Pharmacol Toxicol Methods; 2010; 62(2):107-18. PubMed ID: 20601018
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Protein kinase Cdelta regulates p67phox phosphorylation in human monocytes.
    Zhao X; Xu B; Bhattacharjee A; Oldfield CM; Wientjes FB; Feldman GM; Cathcart MK
    J Leukoc Biol; 2005 Mar; 77(3):414-20. PubMed ID: 15591124
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Phospholipase D1 is threonine-phosphorylated in human-airway epithelial cells stimulated by sphingosine-1-phosphate by a mechanism involving Src tyrosine kinase and protein kinase Cdelta.
    Ghelli A; Porcelli AM; Facchini A; Hrelia S; Flamigni F; Rugolo M
    Biochem J; 2002 Aug; 366(Pt 1):187-93. PubMed ID: 12014986
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Elevated cytosolic Na+ decreases mitochondrial Ca2+ uptake during excitation-contraction coupling and impairs energetic adaptation in cardiac myocytes.
    Maack C; Cortassa S; Aon MA; Ganesan AN; Liu T; O'Rourke B
    Circ Res; 2006 Jul; 99(2):172-82. PubMed ID: 16778127
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Proteomic and functional mapping of cardiac NaV1.5 channel phosphorylation sites.
    Lorenzini M; Burel S; Lesage A; Wagner E; Charrière C; Chevillard PM; Evrard B; Maloney D; Ruff KM; Pappu RV; Wagner S; Nerbonne JM; Silva JR; Townsend RR; Maier LS; Marionneau C
    J Gen Physiol; 2021 Feb; 153(2):. PubMed ID: 33410863
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Targeting the sodium channel NaV1.5 to specific membrane compartments of cardiac cells: not a simple task!
    Shy D; Gillet L; Abriel H
    Circ Res; 2014 Nov; 115(11):901-3. PubMed ID: 25378529
    [No Abstract]   [Full Text] [Related]  

  • 57. Pre- and Delayed Treatments With Ranolazine Ameliorate Ventricular Arrhythmias and Nav1.5 Downregulation in Ischemic/Reperfused Rat Hearts.
    Wei X; Zhu A; Zhang Y; Yao S; Mao W
    J Cardiovasc Pharmacol; 2016 Oct; 68(4):269-279. PubMed ID: 27228311
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels.
    Wagner S; Dybkova N; Rasenack EC; Jacobshagen C; Fabritz L; Kirchhof P; Maier SK; Zhang T; Hasenfuss G; Brown JH; Bers DM; Maier LS
    J Clin Invest; 2006 Dec; 116(12):3127-38. PubMed ID: 17124532
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications.
    Marionneau C; Abriel H
    J Mol Cell Cardiol; 2015 May; 82():36-47. PubMed ID: 25748040
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Reactive oxygen species amplify protein kinase C signaling in high glucose-induced fibronectin expression by human peritoneal mesothelial cells.
    Lee HB; Yu MR; Song JS; Ha H
    Kidney Int; 2004 Apr; 65(4):1170-9. PubMed ID: 15086456
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.