BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 27989756)

  • 1. Redox signaling mediated by the gut microbiota.
    Jones RM; Neish AS
    Free Radic Biol Med; 2017 Apr; 105():41-47. PubMed ID: 27989756
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Redox signaling mediated by the gut microbiota.
    Neish AS
    Free Radic Res; 2013 Nov; 47(11):950-7. PubMed ID: 23937589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reactive oxygen production induced by the gut microbiota: pharmacotherapeutic implications.
    Jones RM; Mercante JW; Neish AS
    Curr Med Chem; 2012; 19(10):1519-29. PubMed ID: 22360484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Redox signaling mediates symbiosis between the gut microbiota and the intestine.
    Neish AS; Jones RM
    Gut Microbes; 2014; 5(2):250-3. PubMed ID: 24637602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbiota-Derived Lactate Activates Production of Reactive Oxygen Species by the Intestinal NADPH Oxidase Nox and Shortens Drosophila Lifespan.
    Iatsenko I; Boquete JP; Lemaitre B
    Immunity; 2018 Nov; 49(5):929-942.e5. PubMed ID: 30446385
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redox signaling regulates commensal-mediated mucosal homeostasis and restitution and requires formyl peptide receptor 1.
    Alam A; Leoni G; Wentworth CC; Kwal JM; Wu H; Ardita CS; Swanson PA; Lambeth JD; Jones RM; Nusrat A; Neish AS
    Mucosal Immunol; 2014 May; 7(3):645-55. PubMed ID: 24192910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enteric commensal bacteria induce extracellular signal-regulated kinase pathway signaling via formyl peptide receptor-dependent redox modulation of dual specific phosphatase 3.
    Wentworth CC; Alam A; Jones RM; Nusrat A; Neish AS
    J Biol Chem; 2011 Nov; 286(44):38448-38455. PubMed ID: 21921027
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Annexin A1, formyl peptide receptor, and NOX1 orchestrate epithelial repair.
    Leoni G; Alam A; Neumann PA; Lambeth JD; Cheng G; McCoy J; Hilgarth RS; Kundu K; Murthy N; Kusters D; Reutelingsperger C; Perretti M; Parkos CA; Neish AS; Nusrat A
    J Clin Invest; 2013 Jan; 123(1):443-54. PubMed ID: 23241962
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Symbiotic lactobacilli stimulate gut epithelial proliferation via Nox-mediated generation of reactive oxygen species.
    Jones RM; Luo L; Ardita CS; Richardson AN; Kwon YM; Mercante JW; Alam A; Gates CL; Wu H; Swanson PA; Lambeth JD; Denning PW; Neish AS
    EMBO J; 2013 Nov; 32(23):3017-28. PubMed ID: 24141879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defensive Mutualism Rescues NADPH Oxidase Inactivation in Gut Infection.
    Pircalabioru G; Aviello G; Kubica M; Zhdanov A; Paclet MH; Brennan L; Hertzberger R; Papkovsky D; Bourke B; Knaus UG
    Cell Host Microbe; 2016 May; 19(5):651-63. PubMed ID: 27173933
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Redox signaling in the gastrointestinal tract.
    Pérez S; Taléns-Visconti R; Rius-Pérez S; Finamor I; Sastre J
    Free Radic Biol Med; 2017 Mar; 104():75-103. PubMed ID: 28062361
    [TBL] [Abstract][Full Text] [Related]  

  • 12. NAD(P)H Oxidase Activity in the Small Intestine Is Predominantly Found in Enterocytes, Not Professional Phagocytes.
    Lindquist RL; Bayat-Sarmadi J; Leben R; Niesner R; Hauser AE
    Int J Mol Sci; 2018 May; 19(5):. PubMed ID: 29734661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging Intestinal ROS in Homeostatic Conditions Using L-012.
    Conroy E; Aviello G
    Methods Mol Biol; 2019; 1982():313-327. PubMed ID: 31172481
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidants in Physiological Processes.
    Knaus UG
    Handb Exp Pharmacol; 2021; 264():27-47. PubMed ID: 32767144
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heme modulates intestinal epithelial cell activation: involvement of NADPHox-derived ROS signaling.
    Barcellos-de-Souza P; Moraes JA; de-Freitas-Junior JC; Morgado-Díaz JA; Barja-Fidalgo C; Arruda MA
    Am J Physiol Cell Physiol; 2013 Jan; 304(2):C170-9. PubMed ID: 23114967
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Localizing NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Sci STKE; 2006 Aug; 2006(349):re8. PubMed ID: 16926363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compartmentalization of redox signaling through NADPH oxidase-derived ROS.
    Ushio-Fukai M
    Antioxid Redox Signal; 2009 Jun; 11(6):1289-99. PubMed ID: 18999986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive oxygen species as intracellular messengers during cell growth and differentiation.
    Sauer H; Wartenberg M; Hescheler J
    Cell Physiol Biochem; 2001; 11(4):173-86. PubMed ID: 11509825
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Redox paradox: insulin action is facilitated by insulin-stimulated reactive oxygen species with multiple potential signaling targets.
    Goldstein BJ; Mahadev K; Wu X
    Diabetes; 2005 Feb; 54(2):311-21. PubMed ID: 15677487
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kaempferol suppresses collagen-induced platelet activation by inhibiting NADPH oxidase and protecting SHP-2 from oxidative inactivation.
    Wang SB; Jang JY; Chae YH; Min JH; Baek JY; Kim M; Park Y; Hwang GS; Ryu JS; Chang TS
    Free Radic Biol Med; 2015 Jun; 83():41-53. PubMed ID: 25645952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.