These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 27989759)

  • 1. A new set of assays for the discovery of aminoacyl-tRNA synthetase inhibitors.
    Saint-Léger A; Ribas de Pouplana L
    Methods; 2017 Jan; 113():34-45. PubMed ID: 27989759
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Throughput Screening for Protein Synthesis Inhibitors Targeting Aminoacyl-tRNA Synthetases.
    Kong J; Fang P; Madoux F; Spicer TP; Scampavia L; Kim S; Guo M
    SLAS Discov; 2018 Feb; 23(2):174-182. PubMed ID: 29020503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A continuous assay for monitoring the synthetic and proofreading activities of multiple aminoacyl-tRNA synthetases for high-throughput drug discovery.
    Grube CD; Roy H
    RNA Biol; 2018; 15(4-5):659-666. PubMed ID: 29168435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovery and characterization of a novel class of pyrazolopyrimidinedione tRNA synthesis inhibitors.
    Montgomery JI; Smith JF; Tomaras AP; Zaniewski R; McPherson CJ; McAllister LA; Hartman-Neumann S; Arcari JT; Lescoe M; Gutierrez J; Yuan Y; Limberakis C; Miller AA
    J Antibiot (Tokyo); 2015 Jun; 68(6):361-7. PubMed ID: 25464974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Quantitative Spectrophotometric Assay to Monitor the tRNA-Dependent Pathway for Lipid Aminoacylation In Vitro.
    Grube CD; Roy H
    J Biomol Screen; 2016 Aug; 21(7):722-8. PubMed ID: 27073192
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthetic and editing reactions of aminoacyl-tRNA synthetases using cognate and non-cognate amino acid substrates.
    Cvetesic N; Gruic-Sovulj I
    Methods; 2017 Jan; 113():13-26. PubMed ID: 27713080
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determining the fidelity of tRNA aminoacylation via microarrays.
    Schwartz MH; Pan T
    Methods; 2017 Jan; 113():27-33. PubMed ID: 27639882
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simultaneous screening of multiple bacterial tRNA synthetases using an Escherichia coli S30-based transcription and translation assay.
    Dermyer M; Wise SC; Braden T; Holler TP
    Assay Drug Dev Technol; 2007 Aug; 5(4):515-21. PubMed ID: 17767419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectrophotometric assays for monitoring tRNA aminoacylation and aminoacyl-tRNA hydrolysis reactions.
    First EA; Richardson CJ
    Methods; 2017 Jan; 113():3-12. PubMed ID: 27780756
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aminoacyl-tRNA synthetases: Structure, function, and drug discovery.
    Rajendran V; Kalita P; Shukla H; Kumar A; Tripathi T
    Int J Biol Macromol; 2018 May; 111():400-414. PubMed ID: 29305884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glu-Q-tRNA(Asp) synthetase coded by the yadB gene, a new paralog of aminoacyl-tRNA synthetase that glutamylates tRNA(Asp) anticodon.
    Blaise M; Becker HD; Lapointe J; Cambillau C; Giegé R; Kern D
    Biochimie; 2005; 87(9-10):847-61. PubMed ID: 16164993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli glutaminyl-tRNA synthetase: a single amino acid replacement relaxes rRNA specificity.
    Uemura H; Conley J; Yamao F; Rogers J; Söll D
    Protein Seq Data Anal; 1988; 1(6):479-85. PubMed ID: 2464170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative analysis of pyrimidine substituted aminoacyl-sulfamoyl nucleosides as potential inhibitors targeting class I aminoacyl-tRNA synthetases.
    Nautiyal M; De Graef S; Pang L; Gadakh B; Strelkov SV; Weeks SD; Van Aerschot A
    Eur J Med Chem; 2019 Jul; 173():154-166. PubMed ID: 30995568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Progress and challenges in aminoacyl-tRNA synthetase-based therapeutics.
    Francklyn CS; Mullen P
    J Biol Chem; 2019 Apr; 294(14):5365-5385. PubMed ID: 30670594
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The plant aminoacyl-tRNA synthetases. Effect of sodium chloride on tRNA aminoacylation and aminoacyl-tRNA decomposition catalysed by aminoacyl-tRNA synthetases from yellow lupin seeds.
    Jakubowski H; Pawelkiewicz J
    Acta Biochim Pol; 1977; 24(2):163-70. PubMed ID: 195427
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Aminoacyl-tRNA synthetase inhibitors as potent antibacterials.
    Lv PC; Zhu HL
    Curr Med Chem; 2012; 19(21):3550-63. PubMed ID: 22680640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Superspecificity of aminoacyl-tRNA-synthases].
    Favorova OO
    Mol Biol (Mosk); 1984; 18(1):205-26. PubMed ID: 6423966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fragment-based methods for the discovery of inhibitors modulating lysyl-tRNA synthetase and laminin receptor interaction.
    Cho HY; Kim S; Jeon YH
    Methods; 2017 Jan; 113():56-63. PubMed ID: 27789335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of aminoacyl-tRNA synthetase stability and substrate interaction by differential scanning fluorimetry.
    Abbott JA; Livingston NM; Egri SB; Guth E; Francklyn CS
    Methods; 2017 Jan; 113():64-71. PubMed ID: 27794454
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of RNA structure using small-angle X-ray scattering.
    Cantara WA; Olson ED; Musier-Forsyth K
    Methods; 2017 Jan; 113():46-55. PubMed ID: 27777026
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.