These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
328 related articles for article (PubMed ID: 27989764)
1. Spore-forming bacteria responsible for food spoilage. André S; Vallaeys T; Planchon S Res Microbiol; 2017 May; 168(4):379-387. PubMed ID: 27989764 [TBL] [Abstract][Full Text] [Related]
2. Tracking spore-forming bacteria in food: from natural biodiversity to selection by processes. Postollec F; Mathot AG; Bernard M; Divanac'h ML; Pavan S; Sohier D Int J Food Microbiol; 2012 Aug; 158(1):1-8. PubMed ID: 22795797 [TBL] [Abstract][Full Text] [Related]
3. Characterization of aerobic spore-forming bacteria associated with industrial dairy processing environments and product spoilage. Lücking G; Stoeckel M; Atamer Z; Hinrichs J; Ehling-Schulz M Int J Food Microbiol; 2013 Sep; 166(2):270-9. PubMed ID: 23973839 [TBL] [Abstract][Full Text] [Related]
4. Thermophilic spore-forming bacteria isolated from spoiled canned food and their heat resistance. Results of a French ten-year survey. André S; Zuber F; Remize F Int J Food Microbiol; 2013 Jul; 165(2):134-43. PubMed ID: 23728430 [TBL] [Abstract][Full Text] [Related]
5. Temperature impacts the sporulation capacities and spore resistance of Moorella thermoacetica. Malleck T; Daufouy G; André S; Broussolle V; Planchon S Food Microbiol; 2018 Aug; 73():334-341. PubMed ID: 29526221 [TBL] [Abstract][Full Text] [Related]
6. The heat resistance and spoilage potential of aerobic mesophilic and thermophilic spore forming bacteria isolated from Chinese milk powders. Sadiq FA; Li Y; Liu T; Flint S; Zhang G; Yuan L; Pei Z; He G Int J Food Microbiol; 2016 Dec; 238():193-201. PubMed ID: 27657656 [TBL] [Abstract][Full Text] [Related]
7. Effect of heating rate on highly heat-resistant spore-forming microorganisms. Gómez-Jódar I; Ros-Chumillas M; Palop A Food Sci Technol Int; 2016 Mar; 22(2):164-72. PubMed ID: 25852134 [TBL] [Abstract][Full Text] [Related]
8. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions. Mtimet N; Trunet C; Mathot AG; Venaille L; Leguérinel I; Coroller L; Couvert O Food Microbiol; 2016 Jun; 56():87-95. PubMed ID: 26919821 [TBL] [Abstract][Full Text] [Related]
9. Convergence of Bigelow and Arrhenius models over a wide range of heating temperatures. André S; Leguerinel I; Palop A; Desriac N; Planchon S; Mafart P Int J Food Microbiol; 2019 Feb; 291():173-180. PubMed ID: 30508773 [TBL] [Abstract][Full Text] [Related]
10. Contamination pathways of spore-forming bacteria in a vegetable cannery. Durand L; Planchon S; Guinebretiere MH; André S; Carlin F; Remize F Int J Food Microbiol; 2015 Jun; 202():10-9. PubMed ID: 25755080 [TBL] [Abstract][Full Text] [Related]
11. Prevalence of Clostridium botulinum and thermophilic heat-resistant spores in raw carrots and green beans used in French canning industry. Sevenier V; Delannoy S; André S; Fach P; Remize F Int J Food Microbiol; 2012 Apr; 155(3):263-8. PubMed ID: 22405945 [TBL] [Abstract][Full Text] [Related]
13. Seasonal and regional occurrence of heat-resistant spore-forming bacteria in the course of ultra-high temperature milk production in Tunisia. Kmiha S; Aouadhi C; Klibi A; Jouini A; Béjaoui A; Mejri S; Maaroufi A J Dairy Sci; 2017 Aug; 100(8):6090-6099. PubMed ID: 28571988 [TBL] [Abstract][Full Text] [Related]
14. PCR detection of thermophilic spore-forming bacteria involved in canned food spoilage. Prevost S; Andre S; Remize F Curr Microbiol; 2010 Dec; 61(6):525-33. PubMed ID: 20397018 [TBL] [Abstract][Full Text] [Related]
15. Involvement of Clostridium gasigenes and C. algidicarnis in 'blown pack' spoilage of Brazilian vacuum-packed beef. Silva AR; Paulo EN; Sant'Ana AS; Chaves RD; Massaguer PR Int J Food Microbiol; 2011 Aug; 148(3):156-63. PubMed ID: 21669470 [TBL] [Abstract][Full Text] [Related]
16. Detection of risk areas in dairy powder processes: The development of thermophilic spore forming bacteria taking into account their growth limits. Delaunay L; Postollec F; Leguérinel I; Mathot AG Int J Food Microbiol; 2024 Jun; 418():110716. PubMed ID: 38669747 [TBL] [Abstract][Full Text] [Related]
17. Efficacy of heat and ethanol spore treatments for the isolation of psychrotrophic Clostridium spp. associated with the spoilage of chilled vacuum-packed meats. Broda DM; De Lacy KM; Bell RG Int J Food Microbiol; 1998 Jan; 39(1-2):61-8. PubMed ID: 9562877 [TBL] [Abstract][Full Text] [Related]
18. Psychrotolerant spore-former growth characterization for the development of a dairy spoilage predictive model. Buehler AJ; Martin NH; Boor KJ; Wiedmann M J Dairy Sci; 2018 Aug; 101(8):6964-6981. PubMed ID: 29803413 [TBL] [Abstract][Full Text] [Related]
19. Viability of bacterial spores surviving heat-treatment is lost by further incubation at temperature and pH not suitable for growth. André S; Charton A; Pons A; Vannier C; Couvert O Food Microbiol; 2021 May; 95():103690. PubMed ID: 33397631 [TBL] [Abstract][Full Text] [Related]
20. Factors contributing to the seasonal variation of Bacillus spp. in pasteurized dairy products. Phillips JD; Griffiths MW J Appl Bacteriol; 1986 Oct; 61(4):275-85. PubMed ID: 3781939 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]