These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 27989793)

  • 21. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression.
    Fisher CK; Mehta P
    PLoS One; 2014; 9(7):e102451. PubMed ID: 25054627
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic modeling of common Escherichia coli strains in human gut microbiome.
    Gao YD; Zhao Y; Huang J
    Biomed Res Int; 2014; 2014():694967. PubMed ID: 25126572
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Advancing functional and translational microbiome research using meta-omics approaches.
    Zhang X; Li L; Butcher J; Stintzi A; Figeys D
    Microbiome; 2019 Dec; 7(1):154. PubMed ID: 31810497
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Droplet-based high-throughput cultivation for accurate screening of antibiotic resistant gut microbes.
    Watterson WJ; Tanyeri M; Watson AR; Cham CM; Shan Y; Chang EB; Eren AM; Tay S
    Elife; 2020 Jun; 9():. PubMed ID: 32553109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ecological and Ontogenetic Components of Larval Lake Sturgeon Gut Microbiota Assembly, Successional Dynamics, and Ecological Evaluation of Neutral Community Processes.
    Abdul Razak S; Scribner KT
    Appl Environ Microbiol; 2020 May; 86(10):. PubMed ID: 32169941
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Towards a predictive systems-level model of the human microbiome: progress, challenges, and opportunities.
    Greenblum S; Chiu HC; Levy R; Carr R; Borenstein E
    Curr Opin Biotechnol; 2013 Aug; 24(4):810-20. PubMed ID: 23623295
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Systematic prediction of health-relevant human-microbial co-metabolism through a computational framework.
    Heinken A; Thiele I
    Gut Microbes; 2015; 6(2):120-30. PubMed ID: 25901891
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibiotic perturbations to the gut microbiome.
    Fishbein SRS; Mahmud B; Dantas G
    Nat Rev Microbiol; 2023 Dec; 21(12):772-788. PubMed ID: 37491458
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Primate microbiomes over time: Longitudinal answers to standing questions in microbiome research.
    Björk JR; Dasari M; Grieneisen L; Archie EA
    Am J Primatol; 2019 Oct; 81(10-11):e22970. PubMed ID: 30941803
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Metagenome-scale community metabolic modelling for understanding the role of gut microbiota in human health.
    Beura S; Kundu P; Das AK; Ghosh A
    Comput Biol Med; 2022 Oct; 149():105997. PubMed ID: 36055158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Progress on network modeling and analysis of gut microecology: a review.
    Luo M; Zhu J; Jia J; Zhang H; Zhao J
    Appl Environ Microbiol; 2024 Mar; 90(3):e0009224. PubMed ID: 38415584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metabolic phenotyping for understanding the gut microbiome and host metabolic interplay.
    Basson AR; Wijeyesekera A
    Emerg Top Life Sci; 2017 Nov; 1(4):325-332. PubMed ID: 33525773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nutritional and host environments determine community ecology and keystone species in a synthetic gut bacterial community.
    Weiss AS; Niedermeier LS; von Strempel A; Burrichter AG; Ring D; Meng C; Kleigrewe K; Lincetto C; Hübner J; Stecher B
    Nat Commun; 2023 Aug; 14(1):4780. PubMed ID: 37553336
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicted Metabolic Function of the Gut Microbiota of Drosophila melanogaster.
    Ankrah NYD; Barker BE; Song J; Wu C; McMullen JG; Douglas AE
    mSystems; 2021 May; 6(3):. PubMed ID: 33947801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enabling rational gut microbiome manipulations by understanding gut ecology through experimentally-evidenced in silico models.
    Molina Ortiz JP; McClure DD; Shanahan ER; Dehghani F; Holmes AJ; Read MN
    Gut Microbes; 2021; 13(1):1965698. PubMed ID: 34455914
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Time for food: The impact of diet on gut microbiota and human health.
    Zhang N; Ju Z; Zuo T
    Nutrition; 2018; 51-52():80-85. PubMed ID: 29621737
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A reverse metabolic approach to weaning: in silico identification of immune-beneficial infant gut bacteria, mining their metabolism for prebiotic feeds and sourcing these feeds in the natural product space.
    Michelini S; Balakrishnan B; Parolo S; Matone A; Mullaney JA; Young W; Gasser O; Wall C; Priami C; Lombardo R; Kussmann M
    Microbiome; 2018 Sep; 6(1):171. PubMed ID: 30241567
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Modulating the Microbiome for Crohn's Disease Treatment.
    Gowen R; Gamal A; Di Martino L; McCormick TS; Ghannoum MA
    Gastroenterology; 2023 Apr; 164(5):828-840. PubMed ID: 36702360
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Integration of constraint-based modeling with fecal metabolomics reveals large deleterious effects of
    Hertel J; Heinken A; Martinelli F; Thiele I
    Gut Microbes; 2021; 13(1):1-23. PubMed ID: 34057024
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Towards a functional hypothesis relating anti-islet cell autoimmunity to the dietary impact on microbial communities and butyrate production.
    Endesfelder D; Engel M; Davis-Richardson AG; Ardissone AN; Achenbach P; Hummel S; Winkler C; Atkinson M; Schatz D; Triplett E; Ziegler AG; zu Castell W
    Microbiome; 2016 Apr; 4():17. PubMed ID: 27114075
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.