These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27989804)
1. Metabolic engineering of cyanobacteria for the photosynthetic production of succinate. Lan EI; Wei CT Metab Eng; 2016 Nov; 38():483-493. PubMed ID: 27989804 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of a fast-growing cyanobacterium Sengupta S; Jaiswal D; Sengupta A; Shah S; Gadagkar S; Wangikar PP Biotechnol Biofuels; 2020; 13():89. PubMed ID: 32467730 [TBL] [Abstract][Full Text] [Related]
3. CRISPRi-enhanced direct photosynthetic conversion of carbon dioxide to succinic acid by metabolically engineered cyanobacteria. Lai MJ; Tsai JC; Lan EI Bioresour Technol; 2022 Dec; 366():128131. PubMed ID: 36252759 [TBL] [Abstract][Full Text] [Related]
4. Construction of a novel d-lactate producing pathway from dihydroxyacetone phosphate of the Calvin cycle in cyanobacterium, Synechococcus elongatus PCC 7942. Hirokawa Y; Goto R; Umetani Y; Hanai T J Biosci Bioeng; 2017 Jul; 124(1):54-61. PubMed ID: 28325659 [TBL] [Abstract][Full Text] [Related]
5. Direct Conversion of CO Lee HJ; Lee J; Lee SM; Um Y; Kim Y; Sim SJ; Choi JI; Woo HM J Agric Food Chem; 2017 Dec; 65(48):10424-10428. PubMed ID: 29068210 [TBL] [Abstract][Full Text] [Related]
6. Photoautotrophic synthesis of butyrate by metabolically engineered cyanobacteria. Lai MJ; Lan EI Biotechnol Bioeng; 2019 Apr; 116(4):893-903. PubMed ID: 30552682 [TBL] [Abstract][Full Text] [Related]
7. Metabolic engineering for isopropanol production by an engineered cyanobacterium, Synechococcus elongatus PCC 7942, under photosynthetic conditions. Hirokawa Y; Dempo Y; Fukusaki E; Hanai T J Biosci Bioeng; 2017 Jan; 123(1):39-45. PubMed ID: 27613406 [TBL] [Abstract][Full Text] [Related]
8. Photosynthetic CO Lee HJ; Choi J; Lee SM; Um Y; Sim SJ; Kim Y; Woo HM J Agric Food Chem; 2017 Feb; 65(6):1087-1092. PubMed ID: 28128561 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Synechococcus elongatus for photoautotrophic production of mannitol. Pritam P; Sarnaik AP; Wangikar PP Biotechnol Bioeng; 2023 Aug; 120(8):2363-2370. PubMed ID: 37387320 [TBL] [Abstract][Full Text] [Related]
10. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production. Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765 [TBL] [Abstract][Full Text] [Related]
11. CRISPR interference (CRISPRi) for gene regulation and succinate production in cyanobacterium S. elongatus PCC 7942. Huang CH; Shen CR; Li H; Sung LY; Wu MY; Hu YC Microb Cell Fact; 2016 Nov; 15(1):196. PubMed ID: 27846887 [TBL] [Abstract][Full Text] [Related]
12. Metabolic engineering of cyanobacteria for photosynthetic 3-hydroxypropionic acid production from CO2 using Synechococcus elongatus PCC 7942. Lan EI; Chuang DS; Shen CR; Lee AM; Ro SY; Liao JC Metab Eng; 2015 Sep; 31():163-70. PubMed ID: 26278506 [TBL] [Abstract][Full Text] [Related]
13. Production of succinate by engineered strains of Synechocystis PCC 6803 overexpressing phosphoenolpyruvate carboxylase and a glyoxylate shunt. Durall C; Kukil K; Hawkes JA; Albergati A; Lindblad P; Lindberg P Microb Cell Fact; 2021 Feb; 20(1):39. PubMed ID: 33557832 [TBL] [Abstract][Full Text] [Related]
14. Aerobic production of succinate from arabinose by metabolically engineered Corynebacterium glutamicum. Chen T; Zhu N; Xia H Bioresour Technol; 2014 Jan; 151():411-4. PubMed ID: 24169202 [TBL] [Abstract][Full Text] [Related]
15. Effects of eliminating pyruvate node pathways and of coexpression of heterogeneous carboxylation enzymes on succinate production by Enterobacter aerogenes. Tajima Y; Yamamoto Y; Fukui K; Nishio Y; Hashiguchi K; Usuda Y; Sode K Appl Environ Microbiol; 2015 Feb; 81(3):929-37. PubMed ID: 25416770 [TBL] [Abstract][Full Text] [Related]
16. Improvement of succinate production by release of end-product inhibition in Corynebacterium glutamicum. Chung SC; Park JS; Yun J; Park JH Metab Eng; 2017 Mar; 40():157-164. PubMed ID: 28232033 [TBL] [Abstract][Full Text] [Related]
17. Engineering an Obligate Photoautotrophic Cyanobacterium to Utilize Glycerol for Growth and Chemical Production. Kanno M; Atsumi S ACS Synth Biol; 2017 Jan; 6(1):69-75. PubMed ID: 27643408 [TBL] [Abstract][Full Text] [Related]
18. Succinate production from CO₂-grown microalgal biomass as carbon source using engineered Corynebacterium glutamicum through consolidated bioprocessing. Lee J; Sim SJ; Bott M; Um Y; Oh MK; Woo HM Sci Rep; 2014 Jul; 4():5819. PubMed ID: 25056811 [TBL] [Abstract][Full Text] [Related]
19. Corynebacterium glutamicum CgynfM encodes a dicarboxylate transporter applicable to succinate production. Fukui K; Nanatani K; Nakayama M; Hara Y; Tokura M; Abe K J Biosci Bioeng; 2019 Apr; 127(4):465-471. PubMed ID: 30392965 [TBL] [Abstract][Full Text] [Related]
20. Genome Features and Biochemical Characteristics of a Robust, Fast Growing and Naturally Transformable Cyanobacterium Synechococcus elongatus PCC 11801 Isolated from India. Jaiswal D; Sengupta A; Sohoni S; Sengupta S; Phadnavis AG; Pakrasi HB; Wangikar PP Sci Rep; 2018 Nov; 8(1):16632. PubMed ID: 30413737 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]