These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 27989804)
21. Microaerobic growth-decoupled production of α-ketoglutarate and succinate from xylose in a one-pot process using Corynebacterium glutamicum. Tenhaef N; Kappelmann J; Eich A; Weiske M; Brieß L; Brüsseler C; Marienhagen J; Wiechert W; Noack S Biotechnol J; 2021 Sep; 16(9):e2100043. PubMed ID: 34089621 [TBL] [Abstract][Full Text] [Related]
22. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli. Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031 [TBL] [Abstract][Full Text] [Related]
23. Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Zhu N; Xia H; Yang J; Zhao X; Chen T Biotechnol Lett; 2014 Mar; 36(3):553-60. PubMed ID: 24129953 [TBL] [Abstract][Full Text] [Related]
24. Evolutionary Engineering of Cyanobacteria to Enhance the Production of α-Farnesene from CO Pattharaprachayakul N; Lee HJ; Incharoensakdi A; Woo HM J Agric Food Chem; 2019 Dec; 67(49):13658-13664. PubMed ID: 31755253 [TBL] [Abstract][Full Text] [Related]
25. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum. Wang C; Zhou Z; Cai H; Chen Z; Xu H J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352 [TBL] [Abstract][Full Text] [Related]
26. Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Litsanov B; Kabus A; Brocker M; Bott M Microb Biotechnol; 2012 Jan; 5(1):116-28. PubMed ID: 22018023 [TBL] [Abstract][Full Text] [Related]
27. Global metabolic rewiring for improved CO Kanno M; Carroll AL; Atsumi S Nat Commun; 2017 Mar; 8():14724. PubMed ID: 28287087 [TBL] [Abstract][Full Text] [Related]
28. Enhancement of acetyl-CoA flux for photosynthetic chemical production by pyruvate dehydrogenase complex overexpression in Synechococcus elongatus PCC 7942. Hirokawa Y; Kubo T; Soma Y; Saruta F; Hanai T Metab Eng; 2020 Jan; 57():23-30. PubMed ID: 31377410 [TBL] [Abstract][Full Text] [Related]
29. CRISPR-Cas9 for the genome engineering of cyanobacteria and succinate production. Li H; Shen CR; Huang CH; Sung LY; Wu MY; Hu YC Metab Eng; 2016 Nov; 38():293-302. PubMed ID: 27693320 [TBL] [Abstract][Full Text] [Related]
30. A Novel Cyanobacterium Synechococcus elongatus PCC 11802 has Distinct Genomic and Metabolomic Characteristics Compared to its Neighbor PCC 11801. Jaiswal D; Sengupta A; Sengupta S; Madhu S; Pakrasi HB; Wangikar PP Sci Rep; 2020 Jan; 10(1):191. PubMed ID: 31932622 [TBL] [Abstract][Full Text] [Related]
31. Recent advances in the metabolic engineering of Corynebacterium glutamicum for the production of lactate and succinate from renewable resources. Tsuge Y; Hasunuma T; Kondo A J Ind Microbiol Biotechnol; 2015 Mar; 42(3):375-89. PubMed ID: 25424693 [TBL] [Abstract][Full Text] [Related]
32. The tricarboxylic acid cycle in cyanobacteria. Zhang S; Bryant DA Science; 2011 Dec; 334(6062):1551-3. PubMed ID: 22174252 [TBL] [Abstract][Full Text] [Related]
33. Enhanced stable production of ethylene in photosynthetic cyanobacterium Synechococcus elongatus PCC 7942. Carbonell V; Vuorio E; Aro EM; Kallio P World J Microbiol Biotechnol; 2019 May; 35(5):77. PubMed ID: 31069553 [TBL] [Abstract][Full Text] [Related]
34. Engineering Corynebacterium glutamicum for the production of 2,3-butanediol. Radoš D; Carvalho AL; Wieschalka S; Neves AR; Blombach B; Eikmanns BJ; Santos H Microb Cell Fact; 2015 Oct; 14():171. PubMed ID: 26511723 [TBL] [Abstract][Full Text] [Related]
35. Metabolic engineering of Synechococcus sp. PCC 7002 to produce poly-3-hydroxybutyrate and poly-3-hydroxybutyrate-co-4-hydroxybutyrate. Zhang S; Liu Y; Bryant DA Metab Eng; 2015 Nov; 32():174-183. PubMed ID: 26474789 [TBL] [Abstract][Full Text] [Related]
36. An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Okino S; Noburyu R; Suda M; Jojima T; Inui M; Yukawa H Appl Microbiol Biotechnol; 2008 Dec; 81(3):459-64. PubMed ID: 18777022 [TBL] [Abstract][Full Text] [Related]
37. Engineering a synthetic pathway in cyanobacteria for isopropanol production directly from carbon dioxide and light. Kusakabe T; Tatsuke T; Tsuruno K; Hirokawa Y; Atsumi S; Liao JC; Hanai T Metab Eng; 2013 Nov; 20():101-8. PubMed ID: 24076145 [TBL] [Abstract][Full Text] [Related]
38. Engineering a cyanobacterium as the catalyst for the photosynthetic conversion of CO2 to 1,2-propanediol. Li H; Liao JC Microb Cell Fact; 2013 Jan; 12():4. PubMed ID: 23339487 [TBL] [Abstract][Full Text] [Related]
40. Isobutanol production in Corynebacterium glutamicum: Suppressed succinate by-production by pckA inactivation and enhanced productivity via the Entner-Doudoroff pathway. Hasegawa S; Jojima T; Suda M; Inui M Metab Eng; 2020 May; 59():24-35. PubMed ID: 31926306 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]