BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

333 related articles for article (PubMed ID: 27989921)

  • 1. A model system for developing a tissue engineered meniscal enthesis.
    McCorry MC; Mansfield MM; Sha X; Coppola DJ; Lee JW; Bonassar LJ
    Acta Biomater; 2017 Jul; 56():110-117. PubMed ID: 27989921
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cellular and Chemical Gradients to Engineer the Meniscus-to-Bone Insertion.
    Iannucci LE; Boys AJ; McCorry MC; Estroff LA; Bonassar LJ
    Adv Healthc Mater; 2019 Apr; 8(7):e1800806. PubMed ID: 30536862
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.
    Baek J; Sovani S; Glembotski NE; Du J; Jin S; Grogan SP; D'Lima DD
    Tissue Eng Part A; 2016 Mar; 22(5-6):436-48. PubMed ID: 26842062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Core-Shell Nanofibrous Scaffolds for Repair of Meniscus Tears.
    Baek J; Lotz MK; D'Lima DD
    Tissue Eng Part A; 2019 Dec; 25(23-24):1577-1590. PubMed ID: 30950316
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of pH and salt concentration on the microstructure and mechanical properties of meniscus extracellular matrix-derived implants.
    Salinas-Fernandez S; Garcia O; Kelly DJ; Buckley CT
    J Biomed Mater Res A; 2024 Mar; 112(3):359-372. PubMed ID: 37921203
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Driving native-like zonal enthesis formation in engineered ligaments using mechanical boundary conditions and β-tricalcium phosphate.
    Brown ME; Puetzer JL
    Acta Biomater; 2022 Mar; 140():700-716. PubMed ID: 34954418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physiologically Distributed Loading Patterns Drive the Formation of Zonally Organized Collagen Structures in Tissue-Engineered Meniscus.
    Puetzer JL; Bonassar LJ
    Tissue Eng Part A; 2016 Jul; 22(13-14):907-16. PubMed ID: 27245484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Osteoarthritic meniscal entheses exhibit altered collagen fiber orientation.
    Haut Donahue TL; Pauly HM
    Connect Tissue Res; 2022 Mar; 63(2):151-155. PubMed ID: 33588665
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering.
    Font Tellado S; Chiera S; Bonani W; Poh PSP; Migliaresi C; Motta A; Balmayor ER; van Griensven M
    Acta Biomater; 2018 May; 72():150-166. PubMed ID: 29550439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Vitro Repair of Meniscal Radial Tear Using Aligned Electrospun Nanofibrous Scaffold.
    Shimomura K; Bean AC; Lin H; Nakamura N; Tuan RS
    Tissue Eng Part A; 2015 Jul; 21(13-14):2066-75. PubMed ID: 25813386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fiber development and matrix production in tissue-engineered menisci using bovine mesenchymal stem cells and fibrochondrocytes.
    McCorry MC; Bonassar LJ
    Connect Tissue Res; 2017; 58(3-4):329-341. PubMed ID: 27925474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanical function near defects in an aligned nanofiber composite is preserved by inclusion of disorganized layers: Insight into meniscus structure and function.
    Bansal S; Mandalapu S; Aeppli C; Qu F; Szczesny SE; Mauck RL; Zgonis MH
    Acta Biomater; 2017 Jul; 56():102-109. PubMed ID: 28159718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regeneration of whole meniscus using meniscal cells and polymer scaffolds in a rabbit total meniscectomy model.
    Kang SW; Son SM; Lee JS; Lee ES; Lee KY; Park SG; Park JH; Kim BS
    J Biomed Mater Res A; 2006 Jun; 77(4):659-71. PubMed ID: 16514599
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Regulation of proteoglycan production by varying glucose concentrations controls fiber formation in tissue engineered menisci.
    McCorry MC; Kim J; Springer NL; Sandy J; Plaas A; Bonassar LJ
    Acta Biomater; 2019 Dec; 100():173-183. PubMed ID: 31546030
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multilayered silk scaffolds for meniscus tissue engineering.
    Mandal BB; Park SH; Gil ES; Kaplan DL
    Biomaterials; 2011 Jan; 32(2):639-51. PubMed ID: 20926132
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells.
    Kara A; Koçtürk S; Bilici G; Havitcioglu H
    J Biomater Appl; 2021 Apr; 35(9):1192-1207. PubMed ID: 33444085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of centrifugal seeding method in improving cells distribution and proliferation on demineralized cancellous bone scaffolds for tissue-engineered meniscus.
    Zhang ZZ; Jiang D; Wang SJ; Qi YS; Zhang JY; Yu JK
    ACS Appl Mater Interfaces; 2015 Jul; 7(28):15294-302. PubMed ID: 26102091
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of decellularized meniscus extracellular matrix and gelatin/chitosan scaffolds for meniscus tissue engineering.
    Yu Z; Lili J; Tiezheng Z; Li S; Jianzhuang W; Haichao D; Kedong S; Tianqing L
    Biomed Mater Eng; 2019; 30(2):125-132. PubMed ID: 30741661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Collagen fibrous scaffolds for sustained delivery of growth factors for meniscal tissue engineering.
    Baek J; Lee KI; Ra HJ; Lotz MK; D'Lima DD
    Nanomedicine (Lond); 2022 Jan; 17(2):77-93. PubMed ID: 34991339
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of a Micronized Meniscus Extracellular Matrix Scaffold for Potential Augmentation of Meniscal Repair and Regeneration.
    Monibi FA; Bozynski CC; Kuroki K; Stoker AM; Pfeiffer FM; Sherman SL; Cook JL
    Tissue Eng Part C Methods; 2016 Dec; 22(12):1059-1070. PubMed ID: 27824291
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.