BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 27989947)

  • 1. Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
    Raufer S; Verhulst S
    Hear Res; 2016 Dec; 342():150-160. PubMed ID: 27989947
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Efferent-mediated reduction in cochlear gain does not alter tuning estimates from stimulus-frequency otoacoustic emission group delays.
    Bhagat SP; Kilgore C
    Neurosci Lett; 2014 Jan; 559():132-5. PubMed ID: 24333175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech recognition in noise: estimating effects of compressive nonlinearities in the basilar-membrane response.
    Horwitz AR; Ahlstrom JB; Dubno JR
    Ear Hear; 2007 Sep; 28(5):682-93. PubMed ID: 17804982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cochlear contributions to the precedence effect.
    Verhulst S; Bianchi F; Dau T
    Adv Exp Med Biol; 2013; 787():283-91. PubMed ID: 23716234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temporal suppression of the click-evoked otoacoustic emission level-curve.
    Verhulst S; Harte JM; Dau T
    J Acoust Soc Am; 2011 Mar; 129(3):1452-63. PubMed ID: 21428509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emissions.
    Johannesen PT; Lopez-Poveda EA
    J Acoust Soc Am; 2008 Oct; 124(4):2149-63. PubMed ID: 19062855
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling cochlear dynamics: interrelation between cochlea mechanics and psychoacoustics.
    Epp B; Verhey JL; Mauermann M
    J Acoust Soc Am; 2010 Oct; 128(4):1870-83. PubMed ID: 20968359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Compression estimates using behavioral and otoacoustic emission measures.
    Williams EJ; Bacon SP
    Hear Res; 2005 Mar; 201(1-2):44-54. PubMed ID: 15721560
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear time-domain cochlear model for transient stimulation and human otoacoustic emission.
    Verhulst S; Dau T; Shera CA
    J Acoust Soc Am; 2012 Dec; 132(6):3842-8. PubMed ID: 23231114
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electromotile hearing: evidence from basilar membrane motion and otoacoustic emissions.
    Nuttall AL; Ren T
    Hear Res; 1995 Dec; 92(1-2):170-7. PubMed ID: 8647740
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overshoot measured physiologically and psychophysically in the same human ears.
    Walsh KP; Pasanen EG; McFadden D
    Hear Res; 2010 Sep; 268(1-2):22-37. PubMed ID: 20430072
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maturation of cochlear nonlinearity as measured by distortion product otoacoustic emission suppression growth in humans.
    Abdala C; Chatterjee M
    J Acoust Soc Am; 2003 Aug; 114(2):932-43. PubMed ID: 12942974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Musical experience sharpens human cochlear tuning.
    Bidelman GM; Nelms C; Bhagat SP
    Hear Res; 2016 May; 335():40-46. PubMed ID: 26900073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent.
    Lopez-Poveda EA; Johannesen PT
    J Assoc Res Otolaryngol; 2009 Dec; 10(4):511-23. PubMed ID: 19526267
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions.
    Manley GA; van Dijk P
    Hear Res; 2016 Jun; 336():53-62. PubMed ID: 27139323
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz.
    Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H
    Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Further tests of the local nonlinear interaction-based mechanism for simultaneous suppression of tone burst-evoked otoacoustic emissions.
    Killan EC; Lutman ME; Thyer NJ
    Hear Res; 2015 Jan; 319():12-24. PubMed ID: 25446244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distortion-product otoacoustic emission suppression tuning curves in humans.
    Gorga MP; Neely ST; Kopun J; Tan H
    J Acoust Soc Am; 2011 Feb; 129(2):817-27. PubMed ID: 21361440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of High Sound Exposure During Air-Conducted Vestibular Evoked Myogenic Potential Testing in Children and Young Adults.
    Rodriguez AI; Thomas MLA; Fitzpatrick D; Janky KL
    Ear Hear; 2018; 39(2):269-277. PubMed ID: 29466264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.