These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

222 related articles for article (PubMed ID: 27989957)

  • 21. Biological butanol production from microalgae-based biodiesel residues by Clostridium acetobutylicum.
    Cheng HH; Whang LM; Chan KC; Chung MC; Wu SH; Liu CP; Tien SY; Chen SY; Chang JS; Lee WJ
    Bioresour Technol; 2015 May; 184():379-385. PubMed ID: 25499745
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development.
    Khedkar MA; Nimbalkar PR; Chavan PV; Chendake YJ; Bankar SB
    Bioprocess Biosyst Eng; 2017 Oct; 40(10):1493-1506. PubMed ID: 28674730
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Perspective and prospective of pretreatment of corn straw for butanol production.
    Baral NR; Li J; Jha AK
    Appl Biochem Biotechnol; 2014 Jan; 172(2):840-53. PubMed ID: 24122704
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evaluation of biobutanol production from non-pretreated rice straw hydrolysate under non-sterile environmental conditions.
    Chen WH; Chen YC; Lin JG
    Bioresour Technol; 2013 May; 135():262-8. PubMed ID: 23186674
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A review on characteristics of food waste and their use in butanol production.
    Abo BO; Gao M; Wu C; Zhu W; Wang Q
    Rev Environ Health; 2019 Dec; 34(4):447-457. PubMed ID: 31415239
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrated butanol recovery for an advanced biofuel: current state and prospects.
    Xue C; Zhao JB; Chen LJ; Bai FW; Yang ST; Sun JX
    Appl Microbiol Biotechnol; 2014 Apr; 98(8):3463-74. PubMed ID: 24535254
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fermentative butanol production by Clostridia.
    Lee SY; Park JH; Jang SH; Nielsen LK; Kim J; Jung KS
    Biotechnol Bioeng; 2008 Oct; 101(2):209-28. PubMed ID: 18727018
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluation of recycling the effluent of hydrogen fermentation for biobutanol production: kinetic study with butyrate and sucrose concentrations.
    Chen WH; Jian ZC
    Chemosphere; 2013 Oct; 93(4):597-603. PubMed ID: 23866171
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260.
    Qureshi N; Singh V; Liu S; Ezeji TC; Saha BC; Cotta MA
    Bioresour Technol; 2014 Feb; 154():222-8. PubMed ID: 24398150
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.
    Sarchami T; Johnson E; Rehmann L
    Bioresour Technol; 2016 May; 208():73-80. PubMed ID: 26922315
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analysis of net energy production and feedstock availability for biobutanol and bioethanol.
    Swana J; Yang Y; Behnam M; Thompson R
    Bioresour Technol; 2011 Jan; 102(2):2112-7. PubMed ID: 20843683
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Novel clostridial fusants in comparison with co-cultured counterpart species for enhanced production of biobutanol using green renewable and sustainable feedstock.
    Syed K; Dahman Y
    Bioprocess Biosyst Eng; 2015 Nov; 38(11):2249-62. PubMed ID: 26395807
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Butanol production from renewable biomass by clostridia.
    Jang YS; Malaviya A; Cho C; Lee J; Lee SY
    Bioresour Technol; 2012 Nov; 123():653-63. PubMed ID: 22939593
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modulation of the Acetone/Butanol Ratio during Fermentation of Corn Stover-Derived Hydrolysate by Clostridium beijerinckii Strain NCIMB 8052.
    Liu ZY; Yao XQ; Zhang Q; Liu Z; Wang ZJ; Zhang YY; Li FL
    Appl Environ Microbiol; 2017 Apr; 83(7):. PubMed ID: 28130305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Downstream process options for the ABE fermentation.
    Friedl A
    FEMS Microbiol Lett; 2016 May; 363(9):. PubMed ID: 27020411
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of butanol production from tropical maize stalk juice by fermentation with Clostridium beijerinckii NCIMB 8052.
    Wang Y; Blaschek HP
    Bioresour Technol; 2011 Nov; 102(21):9985-90. PubMed ID: 21893411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomass, strain engineering, and fermentation processes for butanol production by solventogenic clostridia.
    Lee SH; Yun EJ; Kim J; Lee SJ; Um Y; Kim KH
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8255-71. PubMed ID: 27531513
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overview of Current Developments in Biobutanol Production Methods and Future Perspectives.
    Iyyappan J; Bharathiraja B; Vaishnavi A; Prathiba S
    Methods Mol Biol; 2021; 2290():3-21. PubMed ID: 34009579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recent trends in bioethanol production from food processing byproducts.
    Akbas MY; Stark BC
    J Ind Microbiol Biotechnol; 2016 Nov; 43(11):1593-1609. PubMed ID: 27565674
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Utilization of pentoses from sugarcane biomass: techno-economics of biogas vs. butanol production.
    Mariano AP; Dias MO; Junqueira TL; Cunha MP; Bonomi A; Filho RM
    Bioresour Technol; 2013 Aug; 142():390-9. PubMed ID: 23748087
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.