These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27990213)

  • 1. A hybrid microfluidic device for on-demand orientation and multidirectional imaging of
    Ardeshiri R; Mulcahy B; Zhen M; Rezai P
    Biomicrofluidics; 2016 Nov; 10(6):064111. PubMed ID: 27990213
    [No Abstract]   [Full Text] [Related]  

  • 2. Parallel-Channel Electrotaxis and Neuron Screening of
    Youssef K; Archonta D; Kubiseski T; Tandon A; Rezai P
    Micromachines (Basel); 2020 Aug; 11(8):. PubMed ID: 32759767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A microfluidic device for automated, high-speed microinjection of Caenorhabditis elegans.
    Song P; Dong X; Liu X
    Biomicrofluidics; 2016 Jan; 10(1):011912. PubMed ID: 26958099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic-based electrotaxis for on-demand quantitative analysis of Caenorhabditis elegans' locomotion.
    Tong J; Rezai P; Salam S; Selvaganapathy PR; Gupta BP
    J Vis Exp; 2013 May; (75):e50226. PubMed ID: 23665669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lab-on-chips for manipulation of small-scale organisms to facilitate imaging of neurons and organs.
    Ardeshiri R; Rezai P
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5749-5752. PubMed ID: 28269560
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic Device for Microinjection of
    Ghaemi R; Tong J; Gupta BP; Selvaganapathy PR
    Micromachines (Basel); 2020 Mar; 11(3):. PubMed ID: 32168862
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reciprocal EGF signaling back to the uterus from the induced C. elegans vulva coordinates morphogenesis of epithelia.
    Chang C; Newman AP; Sternberg PW
    Curr Biol; 1999 Mar; 9(5):237-46. PubMed ID: 10074449
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-cost optofluidic add-on enables rapid selective plane illumination microscopy of C. elegans with a conventional wide-field microscope.
    Behrouzi M; Youssef K; Rezai P; Tabatabaei N
    J Biomed Opt; 2021 Dec; 26(12):. PubMed ID: 34894114
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Worm chips: microtools for C. elegans biology.
    Chronis N
    Lab Chip; 2010 Feb; 10(4):432-7. PubMed ID: 20126682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An automated microfluidic system for screening Caenorhabditis elegans behaviors using electrotaxis.
    Liu D; Gupta B; Selvaganapathy PR
    Biomicrofluidics; 2016 Jan; 10(1):014117. PubMed ID: 26909123
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectively controlled microfluidic trap for spatiotemporal analysis of the electrotaxis of Caenorhabditis elegans.
    Yoon S; Yeo M; Kim H; Jeon TJ; Kim SM
    Electrophoresis; 2019 Feb; 40(3):431-436. PubMed ID: 30039534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simple microfluidic devices for in vivo imaging of C. elegans, Drosophila and zebrafish.
    Mondal S; Ahlawat S; Koushika SP
    J Vis Exp; 2012 Sep; (67):. PubMed ID: 23051668
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic-based imaging of complete Caenorhabditis elegans larval development.
    Berger S; Spiri S; deMello A; Hajnal A
    Development; 2021 Jul; 148(18):. PubMed ID: 34170296
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly efficient microfluidic sorting device for synchronizing developmental stages of C. elegans based on deflecting electrotaxis.
    Wang X; Hu R; Ge A; Hu L; Wang S; Feng X; Du W; Liu BF
    Lab Chip; 2015 Jun; 15(11):2513-21. PubMed ID: 25963054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An Automated Microfluidic System for Morphological Measurement and Size-Based Sorting of C. Elegans.
    Dong X; Song P; Liu X
    IEEE Trans Nanobioscience; 2019 Jul; 18(3):373-380. PubMed ID: 30869628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Laterally orienting C. elegans using geometry at microscale for high-throughput visual screens in neurodegeneration and neuronal development studies.
    Cáceres Ide C; Valmas N; Hilliard MA; Lu H
    PLoS One; 2012; 7(4):e35037. PubMed ID: 22536350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microfluidic Device to Measure the Speed of
    Jung J; Nakajima M; Takeuchi M; Najdovski Z; Huang Q; Fukuda T
    Micromachines (Basel); 2016 Mar; 7(3):. PubMed ID: 30407423
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An integrated platform enabling optogenetic illumination of Caenorhabditis elegans neurons and muscular force measurement in microstructured environments.
    Qiu Z; Tu L; Huang L; Zhu T; Nock V; Yu E; Liu X; Wang W
    Biomicrofluidics; 2015 Jan; 9(1):014123. PubMed ID: 25759756
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multi-trap microfluidic chip enabling longitudinal studies of nerve regeneration in Caenorhabditis elegans.
    Gokce SK; Hegarty EM; Mondal S; Zhao P; Ghorashian N; Hilliard MA; Ben-Yakar A
    Sci Rep; 2017 Aug; 7(1):9837. PubMed ID: 28852096
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile size-dependent sorting of C. elegans nematodes and embryos using a tunable microfluidic filter structure.
    Dong L; Cornaglia M; Lehnert T; Gijs MA
    Lab Chip; 2016 Feb; 16(3):574-85. PubMed ID: 26755420
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.