These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 27990236)
1. Electrotactile Feedback Improves Performance and Facilitates Learning in the Routine Grasping Task. Isaković M; Belić M; Štrbac M; Popović I; Došen S; Farina D; Keller T Eur J Transl Myol; 2016 Jun; 26(3):6069. PubMed ID: 27990236 [TBL] [Abstract][Full Text] [Related]
2. Electrotactile EMG feedback improves the control of prosthesis grasping force. Schweisfurth MA; Markovic M; Dosen S; Teich F; Graimann B; Farina D J Neural Eng; 2016 Oct; 13(5):056010. PubMed ID: 27547992 [TBL] [Abstract][Full Text] [Related]
3. Short- and Long-Term Learning of Feedforward Control of a Myoelectric Prosthesis with Sensory Feedback by Amputees. Strbac M; Isakovic M; Belic M; Popovic I; Simanic I; Farina D; Keller T; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2017 Nov; 25(11):2133-2145. PubMed ID: 28600254 [TBL] [Abstract][Full Text] [Related]
4. Tactile feedback is an effective instrument for the training of grasping with a prosthesis at low- and medium-force levels. De Nunzio AM; Dosen S; Lemling S; Markovic M; Schweisfurth MA; Ge N; Graimann B; Falla D; Farina D Exp Brain Res; 2017 Aug; 235(8):2547-2559. PubMed ID: 28550423 [TBL] [Abstract][Full Text] [Related]
5. Multichannel Electrotactile Feedback With Spatial and Mixed Coding for Closed-Loop Control of Grasping Force in Hand Prostheses. Dosen S; Markovic M; Strbac M; Belic M; Kojic V; Bijelic G; Keller T; Farina D IEEE Trans Neural Syst Rehabil Eng; 2017 Mar; 25(3):183-195. PubMed ID: 27071179 [TBL] [Abstract][Full Text] [Related]
6. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929 [TBL] [Abstract][Full Text] [Related]
7. EMG Biofeedback for online predictive control of grasping force in a myoelectric prosthesis. Dosen S; Markovic M; Somer K; Graimann B; Farina D J Neuroeng Rehabil; 2015 Jun; 12():55. PubMed ID: 26088323 [TBL] [Abstract][Full Text] [Related]
8. Electrotactile Feedback with Spatial and Mixed Coding for Object Identification and Closed-loop Control of Grasping Force in Myoelectric Prostheses. Chai G; Briand J; Su S; Sheng X; Zhu X Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():1805-1808. PubMed ID: 31946247 [TBL] [Abstract][Full Text] [Related]
9. Integrated and flexible multichannel interface for electrotactile stimulation. Štrbac M; Belić M; Isaković M; Kojić V; Bijelić G; Popović I; Radotić M; Došen S; Marković M; Farina D; Keller T J Neural Eng; 2016 Aug; 13(4):046014. PubMed ID: 27296902 [TBL] [Abstract][Full Text] [Related]
10. Electrotactile Feedback Improves Grip Force Control and Enables Object Stiffness Recognition While Using a Myoelectric Hand. Chai G; Wang H; Li G; Sheng X; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2022; 30():1310-1320. PubMed ID: 35533165 [TBL] [Abstract][Full Text] [Related]
11. Effects of Different Tactile Feedback on Myoelectric Closed-Loop Control for Grasping Based on Electrotactile Stimulation. Xu H; Zhang D; Huegel JC; Xu W; Zhu X IEEE Trans Neural Syst Rehabil Eng; 2016 Aug; 24(8):827-36. PubMed ID: 26372430 [TBL] [Abstract][Full Text] [Related]
13. Closed-Loop Control of a Multifunctional Myoelectric Prosthesis With Full-State Anatomically Congruent Electrotactile Feedback. Garenfeld MA; Strbac M; Jorgovanovic N; Dideriksen JL; Dosen S IEEE Trans Neural Syst Rehabil Eng; 2023; 31():2090-2100. PubMed ID: 37058389 [TBL] [Abstract][Full Text] [Related]
14. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users. Witteveen HJ; Rietman HS; Veltink PH Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348 [TBL] [Abstract][Full Text] [Related]
15. Combined spatial and frequency encoding for electrotactile feedback of myoelectric signals. Nataletti S; Leo F; Dideriksen J; Brayda L; Dosen S Exp Brain Res; 2022 Sep; 240(9):2285-2298. PubMed ID: 35879359 [TBL] [Abstract][Full Text] [Related]
16. A compact system for simultaneous stimulation and recording for closed-loop myoelectric control. Garenfeld MA; Jorgovanovic N; Ilic V; Strbac M; Isakovic M; Dideriksen JL; Dosen S J Neuroeng Rehabil; 2021 May; 18(1):87. PubMed ID: 34034762 [TBL] [Abstract][Full Text] [Related]
17. Virtual grasping: closed-loop force control using electrotactile feedback. Jorgovanovic N; Dosen S; Djozic DJ; Krajoski G; Farina D Comput Math Methods Med; 2014; 2014():120357. PubMed ID: 24516504 [TBL] [Abstract][Full Text] [Related]
18. Substitutive proprioception feedback of a prosthetic wrist by electrotactile stimulation. Han Y; Lu Y; Zuo Y; Song H; Chou CH; Wang X; Li X; Li L; Niu CM; Hou W Front Neurosci; 2023; 17():1135687. PubMed ID: 36895418 [TBL] [Abstract][Full Text] [Related]
19. Building an internal model of a myoelectric prosthesis via closed-loop control for consistent and routine grasping. Dosen S; Markovic M; Wille N; Henkel M; Koppe M; Ninu A; Frömmel C; Farina D Exp Brain Res; 2015 Jun; 233(6):1855-65. PubMed ID: 25804864 [TBL] [Abstract][Full Text] [Related]
20. Closed-loop control of grasping with a myoelectric hand prosthesis: which are the relevant feedback variables for force control? Ninu A; Dosen S; Muceli S; Rattay F; Dietl H; Farina D IEEE Trans Neural Syst Rehabil Eng; 2014 Sep; 22(5):1041-52. PubMed ID: 24801625 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]