These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27990243)

  • 21. FES-UPP: A Flexible Functional Electrical Stimulation System to Support Upper Limb Functional Activity Practice.
    Sun M; Smith C; Howard D; Kenney L; Luckie H; Waring K; Taylor P; Merson E; Finn S
    Front Neurosci; 2018; 12():449. PubMed ID: 30026683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Functional restoration of elbow extension after spinal-cord injury using a neural network-based synergistic FES controller.
    Giuffrida JP; Crago PE
    IEEE Trans Neural Syst Rehabil Eng; 2005 Jun; 13(2):147-52. PubMed ID: 16003892
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comparison between control methods for implanted FES hand-grasp systems.
    Hart RL; Kilgore KL; Peckham PH
    IEEE Trans Rehabil Eng; 1998 Jun; 6(2):208-18. PubMed ID: 9631329
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Real-time estimation of FES-induced joint torque with evoked EMG : Application to spinal cord injured patients.
    Li Z; Guiraud D; Andreu D; Benoussaad M; Fattal C; Hayashibe M
    J Neuroeng Rehabil; 2016 Jun; 13(1):60. PubMed ID: 27334441
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluating an open-loop functional electrical stimulation controller for holding the shoulder and elbow configuration of a paralyzed arm.
    Wolf DN; Schearer EM
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():789-794. PubMed ID: 28813916
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Restoration of use of paralyzed limb muscles using sensory nerve signals for state control of FES-assisted walking.
    Strange KD; Hoffer JA
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):289-300. PubMed ID: 10498375
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fatigue compensation during FES using surface EMG.
    Winslow J; Jacobs PL; Tepavac D
    J Electromyogr Kinesiol; 2003 Dec; 13(6):555-68. PubMed ID: 14573370
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Feedback Control of Functional Electrical Stimulation for 2-D Arm Reaching Movements.
    Sharif Razavian R; Ghannadi B; Mehrabi N; Charlet M; McPhee J
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2033-2043. PubMed ID: 29994402
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Computer simulation of FES standing up in paraplegia: a self-adaptive fuzzy controller with reinforcement learning.
    Davoodi R; Andrews BJ
    IEEE Trans Rehabil Eng; 1998 Jun; 6(2):151-61. PubMed ID: 9631322
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A patient-controlled functional electrical stimulation system for arm weight relief.
    Klauer C; Ferrante S; Ambrosini E; Shiri U; Dähne F; Schmehl I; Pedrocchi A; Schauer T
    Med Eng Phys; 2016 Nov; 38(11):1232-1243. PubMed ID: 27397417
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developing a Quasi-Static Controller for a Paralyzed Human Arm: A Simulation Study.
    Wolf DN; Schearer EM
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():1153-1158. PubMed ID: 31374785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Personalized Multi-Channel FES Controller Based on Muscle Synergies to Support Gait Rehabilitation after Stroke.
    Ferrante S; Chia Bejarano N; Ambrosini E; Nardone A; Turcato AM; Monticone M; Ferrigno G; Pedrocchi A
    Front Neurosci; 2016; 10():425. PubMed ID: 27695397
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Neurofuzzy adaptive controlling of selective stimulation for FES: a case study.
    Qi H; Tyler DJ; Durand DM
    IEEE Trans Rehabil Eng; 1999 Jun; 7(2):183-92. PubMed ID: 10391589
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comments on "Sliding mode closed-loop control of FES: controlling the shank movement".
    Ebrahimpour MM; Erfanian A
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2842-3. PubMed ID: 19126468
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Holding Static Arm Configurations With Functional Electrical Stimulation: A Case Study.
    Wolf DN; Schearer EM
    IEEE Trans Neural Syst Rehabil Eng; 2018 Oct; 26(10):2044-2052. PubMed ID: 30130233
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of electromyography-controlled functional electrical stimulation on upper extremity function and cortical perfusion in stroke patients.
    Hara Y; Obayashi S; Tsujiuchi K; Muraoka Y
    Clin Neurophysiol; 2013 Oct; 124(10):2008-15. PubMed ID: 23706813
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Intensity- and Duration-Adaptive Functional Electrical Stimulation Using Fuzzy Logic Control and a Linear Model for Dropfoot Correction.
    Chen G; Shen Z; Zhuang Y; Wang X; Song R
    Front Neurol; 2018; 9():165. PubMed ID: 29615963
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Switched Control of Cadence During Stationary Cycling Induced by Functional Electrical Stimulation.
    Bellman MJ; Cheng TH; Downey RJ; Hass CJ; Dixon WE
    IEEE Trans Neural Syst Rehabil Eng; 2016 Dec; 24(12):1373-1383. PubMed ID: 26584496
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Artificial neural network control of FES in paraplegics for patient responsive ambulation.
    Graupe D; Kordylewski H
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):699-707. PubMed ID: 7622153
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Fully automatic control of paraplegic FES pedaling using higher-order sliding mode and fuzzy logic control.
    Farhoud A; Erfanian A
    IEEE Trans Neural Syst Rehabil Eng; 2014 May; 22(3):533-42. PubMed ID: 24760923
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.