These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 27990245)

  • 1. Feedback Error Learning Controller for Functional Electrical Stimulation Assistance in a Hybrid Robotic System for Reaching Rehabilitation.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Pons JL
    Eur J Transl Myol; 2016 Jun; 26(3):6164. PubMed ID: 27990245
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adaptive hybrid robotic system for rehabilitation of reaching movement after a brain injury: a usability study.
    Resquín F; Gonzalez-Vargas J; Ibáñez J; Brunetti F; Dimbwadyo I; Carrasco L; Alves S; Gonzalez-Alted C; Gomez-Blanco A; Pons JL
    J Neuroeng Rehabil; 2017 Oct; 14(1):104. PubMed ID: 29025427
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton.
    del-Ama AJ; Gil-Agudo A; Pons JL; Moreno JC
    J Neuroeng Rehabil; 2014 Mar; 11():27. PubMed ID: 24594302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combining a hybrid robotic system with a bain-machine interface for the rehabilitation of reaching movements: A case study with a stroke patient.
    Resquin F; Ibañez J; Gonzalez-Vargas J; Brunetti F; Dimbwadyo I; Alves S; Carrasco L; Torres L; Pons JL
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():6381-6384. PubMed ID: 28269708
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperative Control for A Hybrid Rehabilitation System Combining Functional Electrical Stimulation and Robotic Exoskeleton.
    Zhang D; Ren Y; Gui K; Jia J; Xu W
    Front Neurosci; 2017; 11():725. PubMed ID: 29311798
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Feedback-Error Learning for time-effective gait trajectory tracking in wearable exoskeletons.
    Figueiredo J; Fernandes PN; Moreno JC; Santos CP
    Anat Rec (Hoboken); 2023 Apr; 306(4):728-740. PubMed ID: 35869906
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Joint angle control by FES using a feedback error learning controller.
    Kurosawa K; Futami R; Watanabe T; Hoshimiya N
    IEEE Trans Neural Syst Rehabil Eng; 2005 Sep; 13(3):359-71. PubMed ID: 16200759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hybrid FES-exoskeleton control: Using MPC to distribute actuation for elbow and wrist movements.
    Dunkelberger N; Berning J; Schearer EM; O'Malley MK
    Front Neurorobot; 2023; 17():1127783. PubMed ID: 37091069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adaptive Cooperative Control for Hybrid FES-Robotic Upper Limb Devices: a Simulation Study.
    Bardi E; Dalla Gasperina S; Pedrocchi A; Ambrosini E
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():6398-6401. PubMed ID: 34892576
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of an FPGA-Based Fuzzy Feedback Controller for Closed-Loop FES in Knee Joint Model.
    Noorsal E; Arof S; Yahaya SZ; Hussain Z; Kho D; Mohd Ali Y
    Micromachines (Basel); 2021 Aug; 12(8):. PubMed ID: 34442590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Iterative Learning Controller for a Switched Cooperative Allocation Strategy during Sit-to-Stand Tasks with a Hybrid Exoskeleton.
    Molazadeh V; Zhang Q; Bao X; Sharma N
    IEEE Trans Control Syst Technol; 2022 May; 30(3):1021-1036. PubMed ID: 36249864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of efficacious gait and upper limb functional interventions based on brain plasticity evidence and model-based measures for stroke patients.
    Daly JJ; Ruff RL
    ScientificWorldJournal; 2007 Dec; 7():2031-45. PubMed ID: 18167618
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational models of upper-limb motion during functional reaching tasks for application in FES-based stroke rehabilitation.
    Freeman C; Exell T; Meadmore K; Hallewell E; Hughes AM
    Biomed Tech (Berl); 2015 Jun; 60(3):179-91. PubMed ID: 25355246
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi Degree of Freedom Hybrid FES and Robotic Control of the Upper Limb.
    Dunkelberger N; Carlson SA; Berning J; Schearer EM; O'Malley MK
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():956-966. PubMed ID: 38329868
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An adaptive reflexive control strategy for walking assistance system based on functional electrical stimulation.
    Dong H; Hou J; Song Z; Xu R; Meng L; Ming D
    Front Neurosci; 2022; 16():944291. PubMed ID: 36090284
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Closed-Loop Torque and Kinematic Control of a Hybrid Lower-Limb Exoskeleton for Treadmill Walking.
    Chang CH; Casas J; Brose SW; Duenas VH
    Front Robot AI; 2021; 8():702860. PubMed ID: 35127833
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Model-Based Shared Control of a Hybrid FES-Exoskeleton: An Application in Participant-Specific Robotic Rehabilitation.
    Kavianirad H; Forouhar M; Sadeghian H; Endo S; Haddadin S; Hirche S
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941166
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shared Control of a Powered Exoskeleton and Functional Electrical Stimulation Using Iterative Learning.
    Molazadeh V; Zhang Q; Bao X; Dicianno BE; Sharma N
    Front Robot AI; 2021; 8():711388. PubMed ID: 34805288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human-robot cooperative movement training: learning a novel sensory motor transformation during walking with robotic assistance-as-needed.
    Emken JL; Benitez R; Reinkensmeyer DJ
    J Neuroeng Rehabil; 2007 Mar; 4():8. PubMed ID: 17391527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human-FES Cooperative Control for Wrist Movement: A Preliminary Study.
    Gui K; Yokoi H; Zhang D
    Eur J Transl Myol; 2016 Jun; 26(3):6162. PubMed ID: 27990243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.