These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 27990245)

  • 21. Hybrid robotic systems for upper limb rehabilitation after stroke: A review.
    Resquín F; Cuesta Gómez A; Gonzalez-Vargas J; Brunetti F; Torricelli D; Molina Rueda F; Cano de la Cuerda R; Miangolarra JC; Pons JL
    Med Eng Phys; 2016 Nov; 38(11):1279-1288. PubMed ID: 27692878
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Intelligent algorithm tuning PID method of function electrical stimulation using knee joint angle.
    Qiu S; He F; Tang J; Xu J; Zhang L; Zhao X; Qi H; Zhou P; Cheng X; Wan B; Ming D
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():2561-4. PubMed ID: 25570513
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Biomimetic NMES controller for arm movements supported by a passive exoskeleton.
    Ferrante S; Ambrosini E; Ferrigno G; Pedrocchi A
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1888-91. PubMed ID: 23366282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A neuro-control system for the knee joint position control with quadriceps stimulation.
    Chang GC; Luh JJ; Liao GD; Lai JS; Cheng CK; Kuo BL; Kuo TS
    IEEE Trans Rehabil Eng; 1997 Mar; 5(1):2-11. PubMed ID: 9086380
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Single-Session Preliminary Evaluation of an Affordable BCI-Controlled Arm Exoskeleton and Motor-Proprioception Platform.
    Elnady AM; Zhang X; Xiao ZG; Yong X; Randhawa BK; Boyd L; Menon C
    Front Hum Neurosci; 2015; 9():168. PubMed ID: 25870554
    [TBL] [Abstract][Full Text] [Related]  

  • 26. PID Controller Design for FES Applied to Ankle Muscles in Neuroprosthesis for Standing Balance.
    Rouhani H; Same M; Masani K; Li YQ; Popovic MR
    Front Neurosci; 2017; 11():347. PubMed ID: 28676739
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Control Scheme That Uses Dynamic Postural Synergies to Coordinate a Hybrid Walking Neuroprosthesis: Theory and Experiments.
    Alibeji NA; Molazadeh V; Dicianno BE; Sharma N
    Front Neurosci; 2018; 12():159. PubMed ID: 29692699
    [TBL] [Abstract][Full Text] [Related]  

  • 28. FES-UPP: A Flexible Functional Electrical Stimulation System to Support Upper Limb Functional Activity Practice.
    Sun M; Smith C; Howard D; Kenney L; Luckie H; Waring K; Taylor P; Merson E; Finn S
    Front Neurosci; 2018; 12():449. PubMed ID: 30026683
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adaptive Hybrid FES-Force Controller for Arm Exosuit.
    Burchielli D; Lotti N; Missiroli F; Bokranz C; Pedrocchi A; Ambrosini E; Masia L
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Brain-Machine Neurofeedback: Robotics or Electrical Stimulation?
    Guggenberger R; Heringhaus M; Gharabaghi A
    Front Bioeng Biotechnol; 2020; 8():639. PubMed ID: 32733860
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Greedy Assist-as-Needed Controller for Upper Limb Rehabilitation.
    Luo L; Peng L; Wang C; Hou ZG
    IEEE Trans Neural Netw Learn Syst; 2019 Nov; 30(11):3433-3443. PubMed ID: 30736008
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fuzzy FES controller using cycle-to-cycle control for repetitive movement training in motor rehabilitation. Experimental tests with wireless system.
    Miura N; Watanabe T; Sugimoto S; Seki K; Kanai H
    J Med Eng Technol; 2011; 35(6-7):314-21. PubMed ID: 21767134
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid Neuroprosthesis for the Upper Limb: Combining Brain-Controlled Neuromuscular Stimulation with a Multi-Joint Arm Exoskeleton.
    Grimm F; Walter A; Spüler M; Naros G; Rosenstiel W; Gharabaghi A
    Front Neurosci; 2016; 10():367. PubMed ID: 27555805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Upper-limb stroke rehabilitation using electrode-array based functional electrical stimulation with sensing and control innovations.
    Kutlu M; Freeman CT; Hallewell E; Hughes AM; Laila DS
    Med Eng Phys; 2016 Apr; 38(4):366-79. PubMed ID: 26947097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A novel method of using accelerometry for upper limb FES control.
    Sun M; Kenney L; Smith C; Waring K; Luckie H; Liu A; Howard D
    Med Eng Phys; 2016 Nov; 38(11):1244-1250. PubMed ID: 27378701
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Tracking ankle joint movements during gait cycle via control of functional electrical stimulation.
    Arash Haghpanah S; Farrokhnia M; Taghvaei S; Eghtesad M; Ghavanloo E
    Proc Inst Mech Eng H; 2022 Feb; 236(2):239-247. PubMed ID: 34632878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An adaptive spinal-like controller: tunable biomimetic behavior for a robotic limb.
    Stefanovic F; Galiana HL
    Biomed Eng Online; 2014 Nov; 13():151. PubMed ID: 25409735
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Neurorehabilitation with new functional electrical stimulation for hemiparetic upper extremity in stroke patients.
    Hara Y
    J Nippon Med Sch; 2008 Feb; 75(1):4-14. PubMed ID: 18360073
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A portable assist-as-need upper-extremity hybrid exoskeleton for FES-induced muscle fatigue reduction in stroke rehabilitation.
    Stewart A; Pretty C; Chen X
    BMC Biomed Eng; 2019; 1():30. PubMed ID: 32903348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An optimized proportional-derivative controller for the human upper extremity with gravity.
    Jagodnik KM; Blana D; van den Bogert AJ; Kirsch RF
    J Biomech; 2015 Oct; 48(13):3692-700. PubMed ID: 26358531
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.