BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 27990689)

  • 1. Resetting the bar: Statistical significance in whole-genome sequencing-based association studies of global populations.
    Pulit SL; de With SA; de Bakker PI
    Genet Epidemiol; 2017 Feb; 41(2):145-151. PubMed ID: 27990689
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Empirical estimation of genome-wide significance thresholds based on the 1000 Genomes Project data set.
    Kanai M; Tanaka T; Okada Y
    J Hum Genet; 2016 Oct; 61(10):861-866. PubMed ID: 27305981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequencing and imputation in GWAS: Cost-effective strategies to increase power and genomic coverage across diverse populations.
    Quick C; Anugu P; Musani S; Weiss ST; Burchard EG; White MJ; Keys KL; Cucca F; Sidore C; Boehnke M; Fuchsberger C
    Genet Epidemiol; 2020 Sep; 44(6):537-549. PubMed ID: 32519380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and accurate method to determine genomewide significance for association tests in sequencing studies.
    Lin DY
    Genet Epidemiol; 2019 Jun; 43(4):365-372. PubMed ID: 30623491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying and mitigating batch effects in whole genome sequencing data.
    Tom JA; Reeder J; Forrest WF; Graham RR; Hunkapiller J; Behrens TW; Bhangale TR
    BMC Bioinformatics; 2017 Jul; 18(1):351. PubMed ID: 28738841
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new expectation-maximization statistical test for case-control association studies considering rare variants obtained by high-throughput sequencing.
    Gordon D; Finch SJ; De La Vega FM
    Hum Hered; 2011; 71(2):113-25. PubMed ID: 21734402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating genome-wide significance for whole-genome sequencing studies.
    Xu C; Tachmazidou I; Walter K; Ciampi A; Zeggini E; Greenwood CM;
    Genet Epidemiol; 2014 May; 38(4):281-90. PubMed ID: 24676807
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weighting sequence variants based on their annotation increases power of whole-genome association studies.
    Sveinbjornsson G; Albrechtsen A; Zink F; Gudjonsson SA; Oddson A; Másson G; Holm H; Kong A; Thorsteinsdottir U; Sulem P; Gudbjartsson DF; Stefansson K
    Nat Genet; 2016 Mar; 48(3):314-7. PubMed ID: 26854916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNP-skimming: A fast approach to map loci generating quantitative variation in natural populations.
    Wessinger CA; Kelly JK; Jiang P; Rausher MD; Hileman LC
    Mol Ecol Resour; 2018 Nov; 18(6):1402-1414. PubMed ID: 30033616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Methods for the Analysis and Interpretation for Rare Variants Associated with Complex Traits.
    Weissenkampen JD; Jiang Y; Eckert S; Jiang B; Li B; Liu DJ
    Curr Protoc Hum Genet; 2019 Apr; 101(1):e83. PubMed ID: 30849219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rare-variant genome-wide association studies: a new frontier in genetic analysis of complex traits.
    Wagner MJ
    Pharmacogenomics; 2013 Mar; 14(4):413-24. PubMed ID: 23438888
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A novel genome-information content-based statistic for genome-wide association analysis designed for next-generation sequencing data.
    Luo L; Zhu Y; Xiong M
    J Comput Biol; 2012 Jun; 19(6):731-44. PubMed ID: 22651812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies for Pathway Analysis Using GWAS and WGS Data.
    White MJ; Yaspan BL; Veatch OJ; Goddard P; Risse-Adams OS; Contreras MG
    Curr Protoc Hum Genet; 2019 Jan; 100(1):e79. PubMed ID: 30387919
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis and optimal design for association studies using next-generation sequencing with case-control pools.
    Liang WE; Thomas DC; Conti DV
    Genet Epidemiol; 2012 Dec; 36(8):870-81. PubMed ID: 22972696
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Alcohol Dependence Genetics: Lessons Learned From Genome-Wide Association Studies (GWAS) and Post-GWAS Analyses.
    Hart AB; Kranzler HR
    Alcohol Clin Exp Res; 2015 Aug; 39(8):1312-27. PubMed ID: 26110981
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genotyping Array Design and Data Quality Control in the Million Veteran Program.
    Hunter-Zinck H; Shi Y; Li M; Gorman BR; Ji SG; Sun N; Webster T; Liem A; Hsieh P; Devineni P; Karnam P; Gong X; Radhakrishnan L; Schmidt J; Assimes TL; Huang J; Pan C; Humphries D; Brophy M; Moser J; Muralidhar S; Huang GD; Przygodzki R; Concato J; Gaziano JM; Gelernter J; O'Donnell CJ; Hauser ER; Zhao H; O'Leary TJ; ; Tsao PS; Pyarajan S
    Am J Hum Genet; 2020 Apr; 106(4):535-548. PubMed ID: 32243820
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The (in)famous GWAS P-value threshold revisited and updated for low-frequency variants.
    Fadista J; Manning AK; Florez JC; Groop L
    Eur J Hum Genet; 2016 Aug; 24(8):1202-5. PubMed ID: 26733288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-depth genotyping-by-sequencing (GBS) in a bovine population: strategies to maximize the selection of high quality genotypes and the accuracy of imputation.
    Brouard JS; Boyle B; Ibeagha-Awemu EM; Bissonnette N
    BMC Genet; 2017 Apr; 18(1):32. PubMed ID: 28381212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome-wide association studies and resting heart rate.
    Kilpeläinen TO
    J Electrocardiol; 2016; 49(6):860-863. PubMed ID: 27519143
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common genetic variation and risk of gallbladder cancer in India: a case-control genome-wide association study.
    Mhatre S; Wang Z; Nagrani R; Badwe R; Chiplunkar S; Mittal B; Yadav S; Zhang H; Chung CC; Patil P; Chanock S; Dikshit R; Chatterjee N; Rajaraman P
    Lancet Oncol; 2017 Apr; 18(4):535-544. PubMed ID: 28274756
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.