These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

684 related articles for article (PubMed ID: 27990722)

  • 1. Radiomic features for prostate cancer detection on MRI differ between the transition and peripheral zones: Preliminary findings from a multi-institutional study.
    Ginsburg SB; Algohary A; Pahwa S; Gulani V; Ponsky L; Aronen HJ; Boström PJ; Böhm M; Haynes AM; Brenner P; Delprado W; Thompson J; Pulbrock M; Taimen P; Villani R; Stricker P; Rastinehad AR; Jambor I; Madabhushi A
    J Magn Reson Imaging; 2017 Jul; 46(1):184-193. PubMed ID: 27990722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition zone prostate cancer: detection and localization with 3-T multiparametric MR imaging.
    Hoeks CM; Hambrock T; Yakar D; Hulsbergen-van de Kaa CA; Feuth T; Witjes JA; Fütterer JJ; Barentsz JO
    Radiology; 2013 Jan; 266(1):207-17. PubMed ID: 23143029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomic features from pretreatment biparametric MRI predict prostate cancer biochemical recurrence: Preliminary findings.
    Shiradkar R; Ghose S; Jambor I; Taimen P; Ettala O; Purysko AS; Madabhushi A
    J Magn Reson Imaging; 2018 Dec; 48(6):1626-1636. PubMed ID: 29734484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Central gland and peripheral zone prostate tumors have significantly different quantitative imaging signatures on 3 Tesla endorectal, in vivo T2-weighted MR imagery.
    Viswanath SE; Bloch NB; Chappelow JC; Toth R; Rofsky NM; Genega EM; Lenkinski RE; Madabhushi A
    J Magn Reson Imaging; 2012 Jul; 36(1):213-24. PubMed ID: 22337003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transition zone prostate cancer: Logistic regression and machine-learning models of quantitative ADC, shape and texture features are highly accurate for diagnosis.
    Wu M; Krishna S; Thornhill RE; Flood TA; McInnes MDF; Schieda N
    J Magn Reson Imaging; 2019 Sep; 50(3):940-950. PubMed ID: 30701625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparing radiomic classifiers and classifier ensembles for detection of peripheral zone prostate tumors on T2-weighted MRI: a multi-site study.
    Viswanath SE; Chirra PV; Yim MC; Rofsky NM; Purysko AS; Rosen MA; Bloch BN; Madabhushi A
    BMC Med Imaging; 2019 Feb; 19(1):22. PubMed ID: 30819131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel PCA-VIP scheme for ranking MRI protocols and identifying computer-extracted MRI measurements associated with central gland and peripheral zone prostate tumors.
    Ginsburg SB; Viswanath SE; Bloch BN; Rofsky NM; Genega EM; Lenkinski RE; Madabhushi A
    J Magn Reson Imaging; 2015 May; 41(5):1383-93. PubMed ID: 24943647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Usefulness of diffusion-weighted imaging and dynamic contrast-enhanced magnetic resonance imaging in the diagnosis of prostate transition-zone cancer.
    Yoshizako T; Wada A; Hayashi T; Uchida K; Sumura M; Uchida N; Kitagaki H; Igawa M
    Acta Radiol; 2008 Dec; 49(10):1207-13. PubMed ID: 19031184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. DCE-MRI of the prostate using shutter-speed vs. Tofts model for tumor characterization and assessment of aggressiveness.
    Hectors SJ; Besa C; Wagner M; Jajamovich GH; Haines GK; Lewis S; Tewari A; Rastinehad A; Huang W; Taouli B
    J Magn Reson Imaging; 2017 Sep; 46(3):837-849. PubMed ID: 28092414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pilot study of a novel tool for input-free automated identification of transition zone prostate tumors using T2- and diffusion-weighted signal and textural features.
    Stember JN; Deng FM; Taneja SS; Rosenkrantz AB
    J Magn Reson Imaging; 2014 Aug; 40(2):301-5. PubMed ID: 24924512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of prostate cancer by integration of line-scan diffusion, T2-mapping and T2-weighted magnetic resonance imaging; a multichannel statistical classifier.
    Chan I; Wells W; Mulkern RV; Haker S; Zhang J; Zou KH; Maier SE; Tempany CM
    Med Phys; 2003 Sep; 30(9):2390-8. PubMed ID: 14528961
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning classifiers can predict Gleason pattern 4 prostate cancer with greater accuracy than experienced radiologists.
    Antonelli M; Johnston EW; Dikaios N; Cheung KK; Sidhu HS; Appayya MB; Giganti F; Simmons LAM; Freeman A; Allen C; Ahmed HU; Atkinson D; Ourselin S; Punwani S
    Eur Radiol; 2019 Sep; 29(9):4754-4764. PubMed ID: 31187216
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative diffusion-weighted imaging and dynamic contrast-enhanced characterization of the index lesion with multiparametric MRI in prostate cancer patients.
    Yuan Q; Costa DN; Sénégas J; Xi Y; Wiethoff AJ; Rofsky NM; Roehrborn C; Lenkinski RE; Pedrosa I
    J Magn Reson Imaging; 2017 Mar; 45(3):908-916. PubMed ID: 27442039
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Patient-specific pharmacokinetic parameter estimation on dynamic contrast-enhanced MRI of prostate: Preliminary evaluation of a novel AIF-free estimation method.
    Ginsburg SB; Taimen P; Merisaari H; Vainio P; Boström PJ; Aronen HJ; Jambor I; Madabhushi A
    J Magn Reson Imaging; 2016 Dec; 44(6):1405-1414. PubMed ID: 27285161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development and validation of a logistic regression model to distinguish transition zone cancers from benign prostatic hyperplasia on multi-parametric prostate MRI.
    Iyama Y; Nakaura T; Katahira K; Iyama A; Nagayama Y; Oda S; Utsunomiya D; Yamashita Y
    Eur Radiol; 2017 Sep; 27(9):3600-3608. PubMed ID: 28289941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. T2* mapping combined with conventional T2-weighted image for prostate cancer detection at 3.0T MRI: a multi-observer study.
    Wu LM; Yao QY; Zhu J; Lu Q; Suo ST; Liu Q; Xu JR; Chen XX; Haacke EM; Hu J
    Acta Radiol; 2017 Jan; 58(1):114-120. PubMed ID: 26917785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analysis of Prostate Multiparametric MR Images for Detection of Aggressive Prostate Cancer in the Peripheral Zone: A Multiple Imager Study.
    Hoang Dinh A; Melodelima C; Souchon R; Lehaire J; Bratan F; Mège-Lechevallier F; Ruffion A; Crouzet S; Colombel M; Rouvière O
    Radiology; 2016 Jul; 280(1):117-27. PubMed ID: 26859255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-trained convolutional neural networks for automated detection of prostate cancer in multi-parametric MRI.
    Yang X; Liu C; Wang Z; Yang J; Min HL; Wang L; Cheng KT
    Med Image Anal; 2017 Dec; 42():212-227. PubMed ID: 28850876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relationship between T2 relaxation and apparent diffusion coefficient in malignant and non-malignant prostate regions and the effect of peripheral zone fractional volume.
    Simpkin CJ; Morgan VA; Giles SL; Riches SF; Parker C; deSouza NM
    Br J Radiol; 2013 Apr; 86(1024):20120469. PubMed ID: 23426849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Machine learning-based radiomic models to predict intensity-modulated radiation therapy response, Gleason score and stage in prostate cancer.
    Abdollahi H; Mofid B; Shiri I; Razzaghdoust A; Saadipoor A; Mahdavi A; Galandooz HM; Mahdavi SR
    Radiol Med; 2019 Jun; 124(6):555-567. PubMed ID: 30607868
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 35.